View or download the article (Eng)
About the Author
Sergey S. Ogorodnikov
4, Volokolamskoe hwy., Moscow, 125993, Russia,
E-mail: sir.ogorod@yandex.ru
Abstract
This study presents a geospatial approach to the assessment of soil fertility within a representative agricultural territory in the Don River Basin. The analysis is based on the integration of agrochemical survey data with cartographic modeling using GIS tools, enabling the construction of detailed maps for key soil properties, including humus content, soil pH, nitrogen (N), phosphorus (P), and potassium (K) availability. The results demonstrate a high degree of spatial heterogeneity in nutrient distribution across the study area. Medium-humus chernozems predominate, while high-humus zones in the western sector exhibit lower pH values, indicating enhanced acidity due to the presence of humic acids and reduced calcium buffering. Nitrogen availability shows a patchwork pattern, with medium and high content dominating, although low-nitrogen zones persist in the western part of the region. Phosphorus availability is markedly elevated in the central part of the area, suggesting potential over-application of fertilizers and ecological oversaturation. Potassium, in contrast, is uniformly abundant, indicating non-limiting status for crop production. An integrated fertility index was developed by overlaying the individual nutrient maps, revealing that 20.3 % of the territory represents high-fertility reference soils, while 15.8 % requires fertility enhancement. The findings confirm the utility of geoinformation methods in agrochemical monitoring and support their application for sustainable land-use planning and adaptive management of soil resources. The methodology offers a replicable framework for regional agroecological diagnostics.
Keywords
References
- Chikaraishi Y., Ohkouchi N., Close H.G., Fry B., Larsen T., Madigan D.J., McCarthy M.D., McMahon K.W., Nagata T., Naito Y.I., Ogawa N.O., Popp B.N., Steffan S.A., Takano Y., Tayasu I., Wyatt A.S.J., Yamaguchi Y.T., Yokoyama Y. Advances in the Application of Amino Acid Nitrogen Isotopic Analysis in Ecological and Biogeochemical Studies. Organic Geochemistry, 2017. V. 113. P. 150–174. DOI: 10.1016/j.orggeochem.2017.07.009.
- Dan S.F., Zeng X., Tang J. Dissolved N Pollution and its Biogeochemical Constraints Along a River-Sea Continuum of a Typical Dense Oyster Mariculture Coastal Water, Northwest South China Sea. Journal of Hazardous Materials, 2024. V. 480. Art. 136207. DOI: 10.1016/j.jhazmat.2024.136207.
- Flint C.G., Henderson L.A., Hensley M.V. Chapter 17—Fostering Interactional Resilience in Social-Ecological Riverine Landscapes: A Case Study from the Santa Fe River Watershed in New Mexico, US. Resilience and Riverine Landscapes, 2024. P. 341–362. DOI: 10.1016/B978-0-323-91716-2.00007-8.
- Gerth W.J., Li J., Giannico G.R. Agricultural Land Use and Macroinvertebrate Assemblages in Lowland Temporary Streams of the Willamette Valley, Oregon, USA. Agriculture, Ecosystems & Environment, 2017. V. 236. P. 154–165. DOI: 10.1016/j.agee.2016.11.010.
- Greene S., Johnes P.J., Bloomfield J.P., Reaney S.M., Lawley R., Elkhatib Y., Freer J., Odoni N., Macleod C.J.A., Percy B. A Geospatial Framework to Support Integrated Biogeochemical Modelling in the United Kingdom. Environmental Modelling & Software, 2015. V. 68. P. 219–232. DOI: 10.1016/j.envsoft.2015.02.012.
- Kellogg D.Q., Gold A.J., Cox S., Addy K., August P.V. A Geospatial Approach for Assessing Denitrification Sinks within Lower-Order Catchments. Ecological Engineering, 2010. V. 36. Iss. 11. P. 1596–1606. DOI: 10.1016/j.ecoleng.2010.02.006.
- Lebedev I.I. Machine Learning for Chemical-Humus Correlation in Soil. BIO Web of Conferences, 2024. V. 113. Art. 04008.
- Ma Z., Guan K., Peng B., Sivapalan M., Li L., Pan M., Zhou W., Warner R., Zhang J. Agricultural Nitrate Export Patterns Shaped by Crop Rotation and Tile Drainage. Water Research, 2023. V. 229. Art. 119468. DOI: 10.1016/j.watres.2022.119468.
- Metechko L.B., Sorokin A.E. Cluster Strategy for Eco-Innovation at Manufacturing Enterprises. Russian Engineering Research, 2018. V. 38. No. 4. P. 316–319.
- Oswald C.J., Kelleher C., Ledford S.H., Hopkins K.G., Sytsma A., Tetzlaff D., Toran L., Voter C. Integrating Urban Water Fluxes and Moving Beyond Impervious Surface Cover: A Review. Journal of Hydrology, 2023. V. 618. Art. 129188. DOI: 10.1016/j.jhydrol.2023.129188.
- Petito M., Cantalamessa S., Pagnani G., Pisante M. Modelling and Mapping Soil Organic Carbon in Annual Cropland under Different Farm Management Systems in the Apulia Region of Southern Italy. Soil and Tillage Research, 2024. V. 235. Art. 105916. DOI: 10.1016/j.still.2023.105916.
- Prăvălie R. Exploring the Multiple Land Degradation Pathways Across the Planet. Earth-Science Reviews, 2021. V. 220. Art. 103689. DOI: 10.1016/j.earscirev.2021.103689.
- Stockmann U., Kidd D., Searle R., Grundy M., McBratney A., Robinson N., O’Brien L., Zund P., Arrouays D., Thomas M., Padarian J., Jones E., McLean Bennett J., Minasny B.B., Holmes K., Malone B.P., Liddicoat C., Meier E.A., Wilson P., Wilford J., Triantafilis J. Operationalising Digital Soil Mapping—Lessons from Australia. Geoderma Regional, 2020. V. 23. Art. e00335. DOI: 10.1016/j.geodrs.2020.e00335.
- Usman S. Advanced Soil Conservation for African Drylands: From Erosion Models to Management Theories. Pedosphere, 2025. In Press, Journal Pre-proof. DOI: 10.1016/j.pedsph.2025.01.012.
- Uwamahoro S., Liu T., Nzabarinda V., Frankl A., Tuyishimire E., Iradukunda A., Ingabire R., Umugwaneza A. Investigation of Groundwater-Surface Water Interaction and Land Use and Land Cover Change in the Catchments: A Case of Kivu Lake, DRC-Rwanda. Groundwater for Sustainable Development, 2024. V. 26. Art. 101236. DOI: 10.1016/j.gsd.2024.101236.
- Wang G., Peng W., Zhang L., Zhang J. Quantifying the Impacts of Natural and Human Factors on Changes in NPP Using an Optimal Parameters-Based Geographical Detector. Ecological Indicators, 2023. V. 155. Art. 111018. DOI: 10.1016/j.ecolind.2023.111018.
- Yasarer L.M.W., Sinnathamby S., Sturm B.S.M. Impacts of Biofuel-Based Land-Use Change on Water Quality and Sustainability in a Kansas Watershed. Agricultural Water Management, 2016. V. 175. P. 4–14. DOI: 10.1016/j.agwat.2016.05.002.
- Yin L., Wei Z., Shi H., Ding D. Ecosystem Services Assessment and Sensitivity Analysis Based on ANN Model and Spatial Data: A Case Study in Miaodao Archipelago. Ecological Indicators, 2022. V. 135. Art. 108511. DOI: 10.1016/j.ecolind.2021.108511.
For citation: Ogorodnikov S.S. Geospatial assessment of soil nutrient availability for sustainable land management: a case study of the Don river basin. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 2. P. 489–496. DOI: 10.35595/2414-9179-2025-2-31-489-496









