Cartographic support of the geoinformation system of agroecological assessment of agricultural lands

DOI: 10.35595/2414-9179-2025-2-31-408-424

View or download the article (Rus)

About the Authors

Maria A. Kondratieva

Perm State Agro-Technological University,
23, Petropavlovskaya str., Perm, 614000, Russia,
E-mail: mariya.kondrateva03@mail.ru

Iraida A. Samofalova

Perm State Agro-Technological University,
23, Petropavlovskaya str., Perm, 614000, Russia,
E-mail: samofalovairaida@mail.ru

Abstract

A series of maps of agroecological typology of lands has been developed. A series of morphometric maps has been developed for geomorphological analysis of land use conditions, including maps of terrain elevation, slope steepness, vertical and horizontal dissection. The farm has a hilly relief with elevations ranging from 178 to 252 m with predominant slopes of 1.5–5°. Vertical dissection varies within 15–89 m, the density of horizontal dissection varies from 0.5 to 2.9 km/km2. Based on the digital version of the soil map at a scale of 1:10 000, maps of soil property indicators have been created, including physical clay (PC) content, soil waterlogging, and the degree of erosion. More than half of the land use area is represented by soils with a FG content of 40–50 %, slightly less common are soils of medium loamy composition with a FG content of 30–40 %, their share is 34 %. About 25 % of the land use area is subject to erosion, including weak and moderate erosion, another 24 % is excessively moistened. Analysis of geomorphological factors made it possible to identify five agroecological groups of lands, among which the most widespread is the semi-hydromorphic-erosive group (48 % of the area). This group occupies an altitudinal tier of 190–220 m with slopes of relief surfaces of more than 2°. The soil cover is characterized by the participation of slightly and moderately eroded sod-podzolic and sod-brown soils with slightly gleyic and gleyic, as well as washed soils. The share of eroded soils is 28 %, waterlogged—6 %. Intensive use of lands of this group is possible in special anti-erosion farming systems with the use of hydraulic engineering, forest and other meliorations. The erosion group of lands occupies an altitudinal tier of 220 m with a relief surface steepness exceeding 2°. The area of this group is 1 158 ha (24 %). This group is characterized by a contrasting soil cover, in which slightly and moderately eroded soils participate significantly—35 %, the share of semi-hydromorphic soils does not exceed 2.5 %. Differences in yield on various components of erosion structures can be smoothed out only with a high level of fertilizer application. Intensive use is possible subject to restrictions in the structure of arable land and the use of anti-erosion measures. Semi-hydromorphic-subordinate and hydromorphic-floodplain groups of lands occupy areas of 716 ha (15 %) and 559 ha (12 %), respectively. The soil cover of the hydromorphic-floodplain group includes alluvial and marshy soils. Such lands require special approaches when used.

Keywords

agroecological assessment, morphometric maps, sustainable development, GIS

References

  1. Blott S.J., Pye K. Particle Size Scales and Classification of Sediment Types Based on Particle Size Distributions: Review and Recommended Procedures. Sedimentology, 2012. No. 59 (7). P. 2071–2096.
  2. Chashchin A.N., Samofalova I.A., Mudrykh N.M. The Use of Morphometric Indicators of the Relief for Soil Mapping of Around Plants in the Conditions of the Middle Taiga in the Northern Part of the Perm Region. InterCarto. InterGIS. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2021. V. 27. Part 4. P. 162–174 (in Russian). DOI: 10.35595/2414-9179-2021-4-27-162-174.
  3. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E.K., Gerlitz L., Wehberg J., Wichmann V., Böhner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 2015. V. 8. Iss. 7. P. 1991–2007. DOI: 10.5194/gmd-8-1991-2015.
  4. Denisova E.V. Application of Geoinformation Technologies for the Analysis of the State of Agricultural Lands. Astrakhan Bulletin of Environmental Education, 2019. No. 4. P. 33–39 (in Russian).
  5. Denisova E.V. Assessment of the Efficiency of Agricultural Land Use using GIS Technologies. Earth Research from Space, 2021. No. 5. P. 15–24 (in Russian). DOI: 10.31857/S0205961421050031.
  6. Eltoshkina N.V. Geoinformation Mapping of Agricultural Land. Moscow Economic Journal, 2022. No. 3. P. 31–46 (in Russian).
  7. Erunova M.G., Kuznetsova A.S., Shpedt A.A., Yakubailik O.E. Geomorphometric Analysis of the Relief of Agricultural Areas Based on Remote Sensing Data. Soil Fertility Problems in Modern Agriculture. Proceedings of the International Scientific and Practical Conference, dedicated to the 70th anniversary of the development of virgin and fallow lands. Krasnoyarsk, 2024. P. 413–416 (in Russian). DOI: 10.52686/9785605087878_413.
  8. Gopp N.V., Nechaeva T.V., Savenkov O.A., Smirnova N.V., Smirnov V.V. The Methods of Geomorphometry and Digital Soil Mapping for Assessing Spatial Variability in the Properties of Agrogray Soils on a Slope. Eurasian Soil Science, 2017. V. 50. No. 1. P. 20–29. DOI: 10.1134/S1064229317010082.
  9. Hawker L., Uhe P., Neal J., Paulo L., Sosa J., Savage J., Sampson C. A 30 m Global Map of Elevation with Forests and Buildings Removed. Environmental Research Letters, 2022. V. 17. Iss. 2. Art. 024016. DOI: 10.1088/1748-9326/ac4d4f.
  10. Kiryushin V.I. Methodology for Integrated Assessment of Agricultural Land. Eurasian Soil Science, 2020. V. 53. No. 7. P. 960–967. DOI: 10.31857/S0032180X20070060.
  11. Kiryushin V.I., Yurova A.Y., Dubachinskaya N.N. Comprehensive Assessment of Agricultural Land by the Example of the Southern Urals. Eurasian Soil Science, 2021. V. 54. No. 11. P. 1721–1731. DOI: 10.31857/S0032180X21110083.
  12. Kondrateva M.A., Chashchin A.N. Assessment of Erosion Risk of Relief Based on the Digital Modeling. InterCarto. InterGIS. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2021. V. 27. Part 2. P. 241–252 (in Russian). DOI: 10.35595/2414-9179-2021-2-27-241-252.
  13. Kondratieva M.A., Samofalova I.A. Cartographic Support of the Section “Agroecological Maps” in the Regional Atlas. InterCarto. InterGIS. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2024. V. 30. Part 2. P. 120–135 (in Russian). DOI: 10.35595/2414-9179-2024-2-30-120-135.
  14. Kuznetsova A.S., Erunova M.G., Yakubailik O.E. Technologies for Creating a Bank of Geospatial Data of Agricultural Experimental Production Facility of the Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”. Modern Problems and Prospects for the Development of Agrochemistry, Agriculture and Related Sciences on Soil Fertility and Productivity of Field Crops in Siberia. Proceedings of the International Scientific and Production Conference. Krasnoyarsk: Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”, 2023а. P. 239–244 (in Russian). DOI: 10.52686/9785604525050_376.
  15. Kuznetsova A.S., Pushkarev A.A., Krasnoshchekov K.V., Yakubailik O.E., Erunova M.G. Application of FABDEM and other Modern Digital Elevation Models in the Agricultural Monitoring System. Information and Mathematical Technologies in Science and Management, 2023b. No. 4 (32). P. 139–147 (in Russian). DOI: 10.25729/ESI.2023.32.4.012.
  16. Samofalova I.A. System Analysis of the Granulometric Composition of Soddy-Podzolic Soils. Actual Problems of Agrarian Science in the XXI Century. Proceedings of the International Scientific and Practical Conference, Perm State Agricultural Academy. Perm: Prokrost, 2014. P. 97–100 (in Russian).
  17. Samofalova I.A. Agroecological Assessment of the Balance of Humus and Nutrient Elements in Soils of the Non-Chernozem Zone. Soil Fertility Problems in Modern Agriculture. Proceedings of the International Scientific and Practical Conference dedicated to the 70th anniversary of the development of virgin and fallow lands. Krasnoyarsk: The Scientific Research Institute of Agriculture—a separate division of the Federal Research Center “Krasnoyarsk Scientific Center” of the Siberian Branch of the Russian Academy of Sciences, 2024. P. 126–129 (in Russian). DOI: 10.52686/9785605087878_126.
  18. Samofalova I.A., Mudrykh N.M., Kamenskikh N.Yu., Lobanova Yu.A. Agro-Ecological Land Typification as a Basis for Improving On-Farm Land Management, Crop Rotation and Fertilizer Systems. Bulletin of the Altai State Agrarian University, 2013. No. 5 (103). P. 45–50 (in Russian).
  19. Shcherbina T.A. Digital Transformation of Agriculture in the Russian Federation: Experience and Prospects. Russia: Development Trends and Prospects, 2019. No. 14-1. P. 450–453 (in Russian).
  20. Shpedt A.A., Erunova M.G., Zlotnikova V.V. Methodology for Assessing the Natural Resource Potential of Agricultural Landscapes using GIS Technologies. Zemledelie (Agriculture), 2023. No. 8. P. 9–13 (in Russian). DOI: 10.24412/0044-3913-2023-8-9-13.
  21. Soil survey manual. Soil Survey Division Staff. United States Department of Agriculture. 2017. No. 18. 120 p.
  22. Stolbovoy V.S., Grebennikov A.M. Soil Quality Indicators of Arable Lands in the Russian Federation. Dokuchaev Soil Bulletin, 2020. V. 104. P. 31–67 (in Russian). DOI: 10.19047/0136-1694-2020-104-31-67.
  23. Tatarintsev V.L., Tatarintsev L.M., Rassypnov V.A. Granulometric Composition of Soils of the Altai Ob Region and its Agroecological Assessment. Bulletin of the Altai State Agrarian University, 2012. No. 6 (92). P. 36–40 (in Russian).
  24. Teslenok K.S., Teslenok S.A. Geoinformation and Cartographic Support for Management Decisions in Agricultural Nature Management. Young Scientist, 2015. V. 5. No. 6 (86). P. 59–62 (in Russian).
  25. Theories and Methods of Soil Physics. Collective monograph. Moscow: Grif and K, 2007. 616 p. (in Russian).
  26. Van Ranst E. The Pedosphere and its Dynamics. A Systems Approach to Soil Science. V. 1: Introduction to Soil Science and Soil Science Resources. N.G. Juma, Salman Productions, University of Alberta, Edmonton. 1999. Hardcover, 315 p. Geoderma, 2001. V. 101. Iss. 3–4. P. 149–151. DOI: 10.1016/S0016-7061(01)00014-3.
  27. Wilson J.P. Digital Terrain Modeling. Geomorphology, 2012. V. 137. Iss. 1. P. 107–121. DOI: 10.1016/j.geomorph.2011.03.012.
  28. Yundunov H.I. Geoinformation Mapping in Agroecological Assessment of Agricultural Lands in the Irkutsk Region. Current Issues in the Development of the Regional Agro-Industrial Complex. Irkutsk: IrSAU, 2007. 91 p. (in Russian).
  29. Yundunov H.I., Eltoshkina N.V., Ponomarenko E.A. Cartographic and Geoinformation Support for Land Use Optimization. Proceedings of the Regional Scientific and Practical Conference. Irkutsk: IrSAU, 2003. P. 58–59 (in Russian).

For citation: Kondratieva M.A., Samofalova I.A. Cartographic support of the geoinformation system of agroecological assessment of agricultural lands. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 2. P. 408–424. DOI: 10.35595/2414-9179-2025-2-31-408-424 (in Russian)