A multiscale study of LULC structure and water quality relationships (case study of the Vorskla river basin)

DOI: 10.35595/2414-9179-2025-2-31-317-342

View or download the article (Rus)

About the Author

Huang Lihua

Belgorod State National Research University,
85, Pobedy str., Belgorod, 308015, Russia,
E-mail: lhhuang0@163.com

Abstract

Based on three snapshots of land use/land cover (LULC) for 2010, 2015 and 2020 and 23 hydrochemical parameters measured in 2008–2022 at the downstream control section of the transboundary Vorskla River, we conducted a multiscale analysis across the entire watershed within Russian territory. Buffer zones of varying radii were delineated around the headwaters (within the impact zone of the Yakovlevsky GOK), the “Kozinka” monitoring station, and the mainstem channel. Principal Component Analysis (PCA) was used to extract composite water-quality factors, and Redundancy Analysis (RDA) was applied to assess their dependence on LULC types. Four principal components together explained 71.94 % of the variance: PC1—buffer capacity and organic load; PC2—anthropogenic inputs; PC3—redox conditions and heavy-metal mobility; and PC4—hardness. Land use exhibited a pronounced gradient: within 400 m of the Yakovlevsky GOK, built-up area increased from 6.09 % at 3 km to 62.47 %, while cropland, pasture, wetlands and open water nearly vanished. In the 100–2 000 m buffers around the Kozinka station, forest and cropland dominated (forest following a U-shaped profile, cropland an inverted-U profile, with pasture at 18.5 % within 100 m). Along the river, a gradient was observed: tributaries < mainstem < combined-bank zones. RDA revealed that built-up areas, water bodies, and wetlands were positively correlated with ionic and anthropogenic indicators and negatively with redox components, whereas grasslands in all buffers were positively associated with PC3 (oxidizing conditions). Cropland within 300–500 m radii showed the strongest correlations with mineralization and water hardness, while forest at 300 m exhibited significant negative correlations with anthropogenic indicators. These relationships highlight the scale- and region-specific nature of “land use–water quality” interactions and can inform recommendations for the priority conservation of a 300 m riparian zone, control of built-up expansion in the mining area, and targeted cropland management at 300–500 m from the river channel to enhance the ecological resilience of this transboundary basin.

Keywords

land use/land cover (LULC), buffer zone, principal component analysis (PCA), redundancy analysis (RDA)

References

  1. Budarina V.A., Ignatenko I.M., Kosinova I.I. Ecological and Geochemical Features of Aeration Zone in Rural Areas in Regions of Influence of Large Mining Facilities. Gornyi Zhurnal (Mining Journal), 2024. No. 11. P. 103–108 (in Russian). DOI: 10.17580/gzh.2024.11.16.
  2. Buryak Z., Grigoreva O. A Project-Based Approach to Reduce the Risk of Soil Erosion in Agricultural Landscapes of Small River Basins Using GIS Technologies. International Multidisciplinary Scientific GeoConference: Surveying Geology and Mining Ecology Management, 2019. V. 19. No. 5-2. P. 19–26. DOI: 10.5593/sgem2019/5.2/S20.003.
  3. Buryak Z.A., Lisetskii F.N., Gusarov A.V., Narozhnyaya A.G., Kitov M. Basin-Scale Approach to Integration of Agro- and Hydroecological Monitoring for Sustainable Environmental Management: A Case Study of Belgorod Oblast, European Russia. Sustainability, 2022. V. 14. No. 2. Art. 927. DOI: 10.3390/su14020927.
  4. Chatterjee A., Shah M.P. Constructed Wetland for Metals: Removal Mechanisms and Analytical Challenges. Recent Trends in Constructed Wetlands for Industrial Wastewater Treatment. Singapore: Springer Nature Singapore, 2023. P. 31–41. DOI: 10.1007/978-981-99-2564-3_2.
  5. Chen X., Zhou W., Pickett S.T.A., Li W., Han L. Spatial-Temporal Variations of Water Quality and its Relationship to Land Use and Land Cover in Beijing, China. International Journal of Environmental Research and Public Health, 2016. V. 13. Art. 449. DOI: 10.3390/ijerph13050449.
  6. Deng Q., Zhang X., Zhang L., Shao X., Gu T. The Impact Mechanism of Human Activities on the Evolution of Coastal Wetlands in the Liaohe River Delta. Frontiers in Ecology and Evolution, 2024. V. 12. Art. 1423234. DOI: 10.3389/fevo.2024.1423234.
  7. Edo G.I., Itoje-Akpokiniovo L.O., Obasohan P., Ikpekoro V.O., Samuel P.O., Jikah A.N., Agbo J.J. Impact of Environmental Pollution from Human Activities on Water, Air Quality and Climate Change. Ecological Frontiers, 2024. V. 44. Iss. 5. P. 874–889. DOI: 10.1016/j.ecofro.2024.02.014.
  8. Hawker L., Uhe P., Neal J. FABDEM Updates—FABDEM V1–2. Geomorphometry. Proceedings of International Conference. Zenodo, 2023. DOI: 10.5281/zenodo.8101259.
  9. Haynes R.J., Zhou Y.F. Retention of Heavy Metals by Dredged Sediments and Their Management Following Land Application. Advances in Agronomy, 2022. V. 171. P. 191–254. DOI: 10.1016/bs.agron.2021.08.004.
  10. Huang L. LULC Dynamics and Carbon Sequestration in Major Iron Ore Regions of Russia and China. Regional Geosystems, 2024. V. 48. No. 4. P. 542–564. DOI: 10.52575/2712-7443-2024-48-4-542-564.
  11. Huang W., Mao J., Zhu D., Lin C. Impacts of Land Use and Land Cover on Water Quality at Multiple Buffer-Zone Scales in a Lakeside City. Water, 2020, V. 12. No. 1. Art. 47. DOI: 10.3390/w12010047.
  12. Kiselev V.V., Kornilov A.G. Assessing the Hydrochemical State of Small Rivers within Rural Areas of the Belgorod Region. Regional Geosystems, 2024. V. 48. No. 3. P. 368–381 (in Russian). DOI: 10.52575/2712-7443-2024-48-3-368-381.
  13. Kong T., Zhang K., Huang L., Di J., Wang Y., Zhang J. Effects of Mixed Application of Microbial Agents on Growth and Substrate Properties of Alfalfa in Coal Gangue Matrix with Different Particle Sizes. Journal of China Coal Society, 2023. V. 48. No. S1. P. 241–251 (in Chinese). DOI: 10.13225/j.cnki.jccs.2022.0615.
  14. Kornilova E.A., Lisetskii F.N., Rodionova M.E. Hydroecological Features of the Vorskla River in the Context of Natural and Economic Changes. Regional Geosystems, 2023. V. 47. No. 4. P. 550–568 (in Russian). DOI: 10.52575/2712-7443-2023-47-4-550-568.
  15. Kotlov S.N., Tselishchev N.A., Sotnik E.A., Gilyazev D.H. Geological and Hydrogeological Factors of Initiation of Water Inflow in Yakovlevo Mine. Gornyi Zhurnal (Mining Journal), 2023. No. 5. P. 108–113 (in Russian). DOI: 10.17580/gzh.2023.05.16.
  16. Li S., Peng S., Jin B., Zhou J., Li Y. Multi-Scale Relationship Between Land Use/Land Cover Types and Water Quality in Different Pollution Source Areas in Fuxian Lake Basin. PeerJ, 2019. V. 7. Art. e7283. DOI: 10.7717/peerj.7283.
  17. Lisetskii F.N., Buryak Z.A. Runoff of Water and its Quality Under the Combined Impact of Agricultural Activities and Urban Development in a Small River Basin. Water, 2023. V. 15. No. 13. Art. 2443. DOI: 10.3390/w15132443.
  18. Lisetskii F.N., Spesivtseva A.D., Huang L. Features of Changes in Surface Waters in the Vorskla River Basin in the Dynamics of Iron Ore Production Development. Current Problems of Geology and Hydrometeorology in a Changing World. Proceedings of IV International Scientific and Practical Conference, 2025. P. 133–139 (in Russian).
  19. Maltsev K.A., Talipova S.N., Magzyanov I.I., Somov A.A., Maltseva T.S. Accuracy Analysis of LS-Factor Using Freely Available Digital Elevation Models. Digital Geography. Proceedings of the II All-Russian Scientific and Practical Conference with International Participation, 2024. P. 35–38 (in Russian). Web resource: http://www.psu.ru/files/docs/science/books/sborniki/cifrovaya-geografiya.pdf (accessed 29.04.2025).
  20. Nuruzzaman M., Bahar M.M., Naidu R. Diffuse Soil Pollution from Agriculture: Impacts and Remediation. Science of The Total Environment, 2025. V. 962. Art. 178398. DOI: 10.1016/j.scitotenv.2025.178398.
  21. Pang X., Guan M. Influence of Construction Works on Urban Streamflow Water Quality Variations. Science of The Total Environment, 2024. V. 955. Art. 176852. DOI: 10.1016/j.scitotenv.2024.176852.
  22. Park S.R., Lee S.W. Spatially Varying and Scale-Dependent Relationships of Land Use Types with Stream Water Quality. International Journal of Environmental Research and Public Health, 2020. V. 17. No. 5. Art. 1673. DOI: 10.3390/ijerph17051673.
  23. Qiu L.F., Zhu J.X., Pan Y., Dang Y.X., Wu S.H. Distribution Characteristics, Ecological Risks, and Source Identification of Heavy Metals in Cultivated Land Under Non-Grain Production. Huan Jing ke Xue, 2023. V. 44. No. 5. P. 2829–2837 (in Chinese). DOI: 10.13227/j.hjkx.202206190.
  24. Ren Z. Biogeochemical Consequences of Grassland Degradation on Linked Soil, Stream, and Lake Ecosystems in Watersheds: A Short Review. Watershed Ecology and the Environment, 2022. V. 4. P. 202–210. DOI: 10.1016/j.wsee.2022.11.005.
  25. Rossi M.L., Kremer P., Cravotta III C.A., Seng K.E., Goldsmith S.T. Land Development and Road Salt Usage Drive Long-Term Changes in Major-Ion Chemistry of Streamwater in Six Exurban and Suburban Watersheds, Southeastern Pennsylvania, 1999–2019. Frontiers in Environmental Science, 2023. V. 11. Art. 1153133. DOI: 10.3389/fenvs.2023.1153133.
  26. Shen Z., Hou X., Li W., Aini G. Relating Landscape Characteristics to Non-Point Source Pollution in a Typical Urbanized Watershed in the Municipality of Beijing. Landscape and Urban Planning, 2014. V. 123. P. 96–107. DOI: 10.1016/j.landurbplan.2013.12.007.
  27. Shen S., Pu J., Xu C., Wang Y., Luo W., Wen B. Effects of Human Disturbance on Riparian Wetland Landscape Pattern in a Coastal Region. Fuxian Lake Basin, 2022. V. 14. No. 20. Art. 5160. DOI: 10.3390/rs14205160.
  28. Shi P., Zhang Y., Li Z., Li P., Xu G. Influence of Land Use and Land Cover Patterns on Seasonal Water Quality at Multi-Spatial Scales. Catena, 2017. V. 151. P. 182–190. DOI: 10.1016/j.catena.2016.12.017.
  29. Singh B.R., Steinnes E. Soil and Water Contamination by Heavy Metals. Soil Processes and Water Quality. CRC Press, 2020. P. 233–271. DOI: 10.1201/9781003070184.
  30. Song W., Zhang H., Li X., Song H., Niu B., Shi X., Li J. Safe Utilization of Cultivated Land in High-Risk Areas of Soil Heavy Metal Pollution Based on Soil Resilience. Frontiers in Environmental Science, 2022. V. 10. Art. 889069. DOI: 10.3389/fenvs.2022.889069.
  31. Vera M.J.A., Engel B. Multi-Scale Analysis of the Dependence of Water Quality on Land Use Using Linear and Mixed Models. Water, 2021. V. 13. No. 19. Art. 2618. DOI: 10.3390/w13192618.
  32. Whitmore T.J., Brenner M., Kolasa K.V., Kenney W.F., Riedinger-Whitmore M.A., Curtis J.H., Smoak J.M. Inadvertent Alkalization of a Florida Lake Caused by Increased Ionic and Nutrient Loading to its Watershed. Journal of Paleolimnology, 2006. V. 36. P. 353–370. DOI: 10.1007/s10933-006-9000-2.
  33. Wu J., Lu J. Landscape Patterns Regulate Non-Point Source Nutrient Pollution in an Agricultural Watershed. Science of the Total Environment, 2019. V. 669. P. 377–388. DOI: 10.1016/j.scitotenv.2019.03.014.
  34. Yermolaev O.P., Lisetskii F.N., Marinina O.A., Buryak Z.A. Basin and Eco-Regional Approach to Optimize the Use of Water and Land Resources. Biosciences Biotechnology Research Asia, 2015. V. 12. No. S2. P. 145–158. DOI: 10.13005/bbra/2021.
  35. Yermolaev O.P., Mukharamova S.S., Maltsev K.A., Ivanov M.A., Ermolaeva P.O., Gayazov A.I., Lisetskii F.N. Geographic Information System and Geoportal River Basins of the European Russia. IOP Conference Series: Earth and Environmental Science, 2018. V. 107. No. 1. DOI: 10.1088/1755-1315/107/1/012108.
  36. Zhang D., Huang R., Gao X.S. Spatial Characteristics and Potential Ecological Risk Factors of Heavy Metals in Cultivated Land in the Transition Zone of a Mountain Plain. Huan Jing Ke Xue, 2022. V. 43. No. 2. P. 946–956 (in Chinese). DOI: 10.13227/j.hjkx.202105139.
  37. Zhang X., Liu L., Chen X., Gao Y., Xie S., Mi J. GLC_FCS30: Global Land Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth System Science Data, 2021. V. 13. No. 6. P. 2753–2776. DOI: 10.5194/essd-13-2753-2021.
  38. Zhao J., Lin L., Yang K., Liu Q., Qian G. Influences of Land Use on Water Quality in a Reticular River Network Area: A Case Study in Shanghai, China. Landscape and Urban Planning, 2015. V. 137 P. 20–29. DOI: 10.1016/j.landurbplan.2014.12.010.

For citation: Huang L. A multiscale study of LULC structure and water quality relationships (case study of the Vorskla river basin). InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 2. P. 317–342. DOI: 10.35595/2414-9179-2025-2-31-317-342 (in Russian)