Digital hydrological landscape model for hydrological simulations of the river basin

DOI: 10.35595/2414-9179-2025-2-31-287-300

View or download the article (Eng)

About the Authors

Anna Yu. Klikunova

Volgograd State University, Institute of Mathematics and Information Technologies,
100, Universitetsky ave., Volgograd, 400062, Russia,
E-mail: klikunova@volsu.ru

Alexandr V. Khoperskov

Volgograd State University, Institute of Mathematics and Information Technologies,
100, Universitetsky ave., Volgograd, 400062, Russia,
E-mail: khoperskov@volsu.ru

Abstract

Mathematical modeling methods are actively used to analyze hydrological regimes of both water bodies on the Earth’s surface and groundwater, sediment transport, and the spread of pollutants. The corresponding numerical models are implemented as software for high-performance computing on multi-GPU and require the specification of a large number of geographically referenced distributions of physical characteristics of the studied area. These data consist of sets of spatial matrices and form the Digital Hydrological Landscape Model (DHLM), the description of which is the main goal of this paper. We distinguish five main DHLM modules, including spatial distributions of parameters necessary for simulating the dynamics of surface and ground water together with sediments. The first module contains spatial matrices of elevations, roughness coefficient of the underlying surface, water sources and sinks, meteorological data, characteristics of hydraulic structures and a number of others. The second and third modules are associated with models of transport of tractional and suspended sediments, respectively. The dynamics of the two types of sediments depends on the characteristics of the water flow and, in turn, affects the topography of the area. This ensures a self-consistent nature of the movement of water and solid particles. The fourth module is designed to support groundwater modeling and contains spatial matrices characterizing the aquifer, soil properties at different depths, and the interaction between surface and underground flows. The fifth module allows processing and visualizing the results of simulations at different points in time against the background of input thematic maps for each of the parameters of the digital hydrological landscape model. Construction of all spatial characteristics of DHLM involves the use of iterative procedures for their consistent refinement. The process of updating the digital elevation model using fusion of elevation data from different sources is discussed in more detail.

Keywords

hydrology, sediment transport, digital models, hydrological landscape, computational fluid dynamics

References

  1. Agafonnikova E.O., Klikunova A.Yu., Khoperskov A.V. Computer Simulation of the Volga River Hydrological Regime: Problem of Water-Retaining Dam Optimal Location. Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 2017. V. 10. No. 3. P. 148–155. DOI: 10.14529/mmp170313.
  2. Amra R., Araki S., Geib C., Davies G. Error-Reduced Digital Elevation Models and High-Resolution Land Cover Roughness in Mapping Tsunami Exposure for Low Elevation Coastal Zones. Remote Sensing Applications: Society and Environment, 2025. V. 37. P. 101438. DOI: 10.1016/j.rsase.2024.101438.
  3. Coon W.F. Estimation of Roughness Coefficients for Natural Stream Channels with Vegetated Banks. US Geological Survey Water-Supply Paper, 1998. V. 2441. P. 133.
  4. Das B.S., Khatua K.K. Flow Resistance in a Compound Channel with Diverging and Converging Floodplains. Journal of Hydraulic Engineering, 2018. V. 144. No. 8. P. 04018051. DOI: 10.1061/(ASCE)HY.1943-7900.0001496.
  5. Erunova M.G., Yakubailik O.E. Geomorphometric Analysis of Agricultural Areas Based on the FABDEM Digital Elevation Model. InterCarto. InterGIS, 2024. V. 30. Part 2. P. 252–262. DOI: 10.35595/2414-9179-2024-2-30-252-262.
  6. Gartsman B.I., Shekman E.A. Potential of River Network Modeling Based on GIS Technologies and Digital Elevation Model. Russian Meteorology and Hydrology, 2016. V. 41. No. 1. P. 63–71. DOI: 10.3103/S1068373916010088.
  7. Gebru H., Gebreyohannes T., Hagos E., Perilli N. Hydrogeological Assessment and Steady-State Groundwater Flow Modeling for Groundwater Management in the Golina River Sub-Basin, Northern Ethiopia, Using MODFLOW 6. Water, 2025. V. 17. No. 7. P. 949. DOI: 10.3390/w17070949.
  8. Hafiyyana Q., Harlanb D., Adityawanb M.B., Natakusumahc D.K., Magdalenad I. 2D Numerical Model of Sediment Transport Under Dam-break Flow Using Finite Element. International Journal on Advanced Science, Engineering and Information Technology, 2021. V. 11. No. 6. P. 2476–2481.
  9. Hatziyiannakis E., Pantelakis D., Hatzispiroglou I., Arampatzis G., Ilias A., Panagopoulos A. Discharge Measurements and Roughness Coefficient Estimation in a River. The Case of Strymonas River in Northern Greece. Environmental Processes, 2016. V. 3. No. 1. P. 263–275. DOI: 10.10107/s40710-015-0120-4.
  10. Huggins X., Gleeson T., Villholth K.G., Rocha J.C., Famiglietti J.S. Groundwaterscapes: A Global Classification and Mapping of Groundwater’s Large-Scale Socioeconomic, Ecological, and Earth System Functions. Water Resources Research, 2024. V. 60. No. 10. P. e2023WR036287. DOI: 10.1029/2023WR036287.
  11. Isaeva I.I., Voronin A.A. Models for Managing Hydraulic Projects in Floodplain Areas, Considering the Activity of Economic Entities. Mathematical physics and computer simulation, 2024. V. 27. No. 1. P. 45–61 (in Russian). DOI: 10.15688/mpcm.jvolsu.2024.1.4.
  12. Isaeva I.I., Voronin A.A., Khoperskov A.V., Kharitonov M.A. Modeling the Territorial Structure Dynamics of the Northern Part of the Volga-Akhtuba Floodplain. Computation, 2022. V. 10. No. 4. P. 62. DOI: 10.3390/computation10040062.
  13. Kalugin A.S., Lupakov S.Yu. The Effect of Natural and Anthropogenic Climate Changes on River Runoff and Snow Water Equivalent in the Lena River Basin. Water Resources, 2023. V. 50. No. 4. P. 557–568 (in Russian). DOI: 10.1134/S0097807823040139.
  14. Khoperskov A.V., Khrapov S.S., Klikunova A.Yu., Popov I.E. Efficiency of Using GPUs for Reconstructing the Hydraulic Resistance in River Systems Based on Combination of High Performance Hydrodynamic Simulation and Machine Learning. Lobachevsky Journal of Mathematics, 2024. V. 45. No. 7. P. 3085–3096. DOI: 10.1134/S199508022460376X.
  15. Khoroshev A. Landscape-Ecological Approach to Spatial Planning as a Tool to Minimize Socio-Ecological Conflicts: Case Study of Agrolandscape in the Taiga Zone of Russia. Land, 2020. V. 9. No. 6. P. 192. DOI: 10.3390/land9060192.
  16. Khrapov S.S. Numerical Modeling of Hydrodynamic Accidents: Erosion of Dams and Flooding of Territories. Vestnik of St. Petersburg University, Mathematics, 2023. V. 56. No. 2. P. 261–272. DOI: 10.1134/S1063454123020085.
  17. Khrapov S.S., Khoperskov A.V. Application of Graphics Processing Units for Self-Consistent Modelling of Shallow Water Dynamics and Sediment Transport. Lobachevsky Journal of Mathematics, 2020. V. 41. No. 8. P. 1475–1484. DOI: 10.1134/S1995080220080089.
  18. Klikunova A.Yu., Khoperskov A.V. Calculation of Hydrological Connection Between the Volga River and the Akhtuba River Using Numerical Hydrodynamic Modeling. St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2023. V. 16. No. 1. P. 326–330. DOI: 10.13140/RG.2.2.24361.67683.
  19. Klikunova A.Yu., Polyakov M.V., Khrapov S.S., Khoperskov A.V. Problem of Building High-Quality Predictive Model of River Hydrology: The Combined Use of Hydrodynamic Simulations and Intelligent Computing. Communications in Computer and Information Science, 2023. V. 1909. P. 191. DOI: 10107/978.-3-031-44615-3_13.
  20. Lazzarin T., Defina A., Viero D.P. Assessing 40 Years of Flood Risk Evolution at the Micro-Scale Using an Innovative Modeling Approach: The Effects of Urbanization and Land Planning. Geosciences, 2023. V. 13. No. 4. P. 112. DOI: 10.3390/geosciences13040112.
  21. Li W., Hu P., Pähtz T., He Z., Cao Z. Limitations of Empirical Sediment Transport Formulas for Shallow Water and their Consequences for Swash Zone Modelling. Journal of Hydraulic Research, 2017. V. 55. No. 1. P. 114–120. DOI: 10.1080/00221686.2016.1212942.
  22. Lisina A.A., Frolova N.L., Kalugin A.S., Krylenko I.N., Motovilov Yu.G. Assessment of the Kolyma River Hydrological Regime Dynamics in the 21st Century Based on Runoff Formation Model. Geography, Environment, Sustainability, 2025. V. 18. No. 1. P. 23–34. DOI: 10.24057/2071-9388-2025-3482.
  23. Liu T., Trim S.J., Ko S.B., Spiteri R.J. The Multi-GPU Wetland DEM Ponding Model. Computers & Geosciences, 2025. V. 199. P. 105912. DOI: 10.1016/j.cageo.2025.105912.
  24. Meurk C.D., Swaffield S.R. A Landscape Ecological Framework for Indigenous Regeneration in Rural New Zealand-Aotearoa. Landscape and Urban Planning, 2000. V. 50. Iss. 1–3. P. 129–144. DOI: 10.1016/S0169-2046(00)00085-2.
  25. Ndengna A.R.N., Njifenjou A. A Well-Balanced PCCU-AENO Scheme for a Sediment Transport Model. Ocean Systems Engineering, 2022. V. 12. No. 3. P. 359–384. DOI: 10.12989/ose.2022.12.3.359.
  26. Okolie C.J., Smit J.L. A Systematic Review and Meta-Analysis of Digital Elevation Model (DEM) Fusion: Pre-processing, Methods and Applications. ISPRS Journal of Photogrammetry and Remote Sensing, 2022. V. 188. P. 1–29. DOI: 10.1016/j.isprsjprs.2022.03.016.
  27. Parsons M., McLoughlin C.A., Kotschy K.A., Rogers K.H., Rountree M.W. The Effects of Extreme Floods on the Biophysical Heterogeneity of River Landscapes. Frontiers in Ecology and The Environment, 2005. V. 3. Iss. 9. P. 487–494. DOI: 10.1890/1540-9295(2005)003[0487:TEOEFO]2.0.CO;2.
  28. Pasculli A., Cinosi J., Turconi L., Sciarra N., Sciarra N. Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System for Fast Alpine Muddy-Debris-Flow. Water, 2021. V. 13. No. 6. P. 750. DOI: 10.3390/w13060750.
  29. Shao X.J., Wang X.K. Introduction to River Mechanics. 2005.
  30. Sharma A.P., Fu X., Kattel G.R., Adhikari T.R., Hassan M.A. Appraising Flood Risk and Inundation Extent Using GIS-aided 2D Hydraulic Modeling in Nepal Himalaya: A Case of West Rapti River Basin. Modeling Earth Systems and Environment, 2025. V. 11. No. 3. P. 176. DOI: 10.1007/s40808-025-02356-5.
  31. Szypula B. Accuracy of UAV-based DEMs without Ground Control Points. Geoinformatika, 2024. V. 28. No. 1. P. 1–28. DOI: 10.1007/s10707-023-00498-1.
  32. Talchabhadel R., Nakagawa H., Kawaike K., Yamanoi K., Thapa B.R. Assessment of Vertical Accuracy of Open Source 30 m Resolution Space-Borne Digital Elevation Models. Geomatics, Natural Hazards and Risk, 2021. V. 12. No. 1. P. 939–960. DOI: 10.1080/19475705.2021.1910575.
  33. Vasil’eva E.S., Belikov V.V. Numerical Modeling of a Cascade Hydrodynamic Breakdown at the Verkhneuralsk and Magnitogorsk Dams. Power Technology and Engineering, 2024. V. 57. P. 724–732. DOI: 10.1007/s10749-024-01726-w.
  34. Venditti J.G., Church M.A., Bennett S.J. Bed Form Initiation from a Flat Sand Bed. Journal of Geophysical Research: Earth Surface, 2005. V. 110. No. F1. P. 1–19. DOI: 10.1029/2004JF000149.
  35. West C., Rosolem R., MacDonald A.M., Cuthbert M., Wagener T. Understanding Process Controls on Groundwater Recharge Variability across Africa through Recharge Landscapes. Journal of Hydrology, 2022. V. 612. P. 127967. DOI: 10.1016/j.jhydrol.2022.127967.
  36. Winter T.C. Relation of Streams, Lakes, and Wetlands to Groundwater Flow Systems. Hydrogeology Journal, 1999. V. 7. P. 28–45.
  37. Winter T.C. The Concept of Hydrologic Landscapes. Journal of the American Water Resources Association, 2001. V. 37. No. 2. P. 335–349. DOI: 10.1111/j.1752-1688.2001.tb00973.x.
  38. Xia J., Lin B., Falconer R.A., Wang Y. Modelling of Man-made Flood Routing in the Lower Yellow River, China. Thomas Telford Ltd.: Proceedings of the Institution of Civil Engineers-Water Management, 2012. V. 165. No. 7. P. 377–391. DOI: 10.1680/wama.11.00028.
  39. Ye A., Zhou Z., You J., Ma F., Duan Q. Dynamic Manning’s Roughness Coefficients for Hydrological Modelling in Basins. Hydrology Research, 2018. V. 49. No. 5. P. 1379–1395. DOI: 10.2166/nh.2018.175.
  40. Yu C., Wang Q., Zhang Z., Zhong Z., Ding Y., Lai T., Huang H., Shen P. Multi-Source Data Joint Processing Framework for DEM calibration and Fusion. International Journal of Applied Earth Observation and Geoinformation, 2025. V. 139. P. 104484.
  41. Zanozin V.V., Barmin A.N., Zanozin V.V. Geospatial Modeling of the Organization of the Landscape-Ecological Framework of the Volga Delta. InterCarto. InterGIS. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2024. V. 30. Part 1. P. 80–93 (in Russian). DOI: 10.35595/2414-9179-2024-1-30-80-93.
  42. Zhao Y., Wu B., Kong G., Zhang H., Wu J., Yu B., Wu J., Fan H. Generating High-Resolution DEMs in Mountainous Regions Using ICESat-2/ATLAS Photons. International Journal of Applied Earth Observation and Geoinformation, 2025. V. 138. P. 104461. DOI: 10.1016/j.jag.2025.104461.

For citation: Klikunova A.Yu., Khoperskov A.V. Digital hydrological landscape model for hydrological simulations of the river basin. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 2. P. 287–300. DOI: 10.35595/2414-9179-2025-2-31-287-300