The experience of using NDVI and color vegetation indexes of UAVs to identify phytocenotic parameters of steppe vegetation

DOI: 10.35595/2414-9179-2025-2-31-100-116

View or download the article (Rus)

About the Author

Vladimir M. Pavleichik

Institute of Steppe of the Ural Branch of the Russian Academy of Sciences,
11, Pionerskaya str., Orenburg, 460000, Russia,
E-mail: vmpavleychik@gmail.com

Abstract

The spatial and temporal variability in the development of steppe fires is largely due to the peculiarities of seasonal, interannual and long-term vegetation conditions. At the same time, there is no objective understanding of which phytocenotic parameters of steppe vegetation are recorded by spectral vegetation indices (SVI) based on Earth remote sensing materials. In this regard, the purpose of the study was to identify these correspondences, as well as to test aerial photography materials as an additional source of detailed information about the spatial and temporal structure of vegetation cover. In the area located in the foothill steppes of the Southern Urals, field studies were conducted in 2023–2024, during which vegetation descriptions and mowing were carried out monthly during the growing season (April–October), aerial photography using a UAV with a standard RGB-sensor. Vegetation is represented by the Stipa zalesskii–Festuca valesiaca–Stipa capillata community and its pasture-degraded variant Ceratocarpus arenarius–Potentilla bifurca. The objective advantage of aerial photographs and color vegetation index (CVI) NDI, VARI, ExG, GLI, ExGR and ExR distribution schemes based on them is their high level of detail, which makes it possible to assess the features of spatial differentiation of vegetation cover, the direction of seasonal and long-term changes. It was revealed that the values of NDVI Sentinel-1–2 and CVI were most often highly correlated with the projective cover of green vegetation. A close relationship was observed with other phytocenotic indicators (total projected coverage, total phytomass reserves and green vegetation) in the hydrothermal conditions favorable for vegetation in 2024 due to the abundance of green vegetation. The results obtained suggest that the main factors of discrepancies between spectral and color indexes and the actual parameters of steppe communities are: a) the overlap of green vegetation with dead phytomass; b) the small share of diverse grasses in the structure of steppe communities; c) seasonal differences in the spectral response of dominant plants and in the aspects they create; d) morphological features of plant species, the volumetric structure of vegetation cover created by them. The revealed phenological reactions of communities to the features of hydrothermal conditions in 2023 and 2024 indicate a high degree of interannual and seasonal variability in their fire status.

Keywords

steppe phytocenoses, NDVI, aerial photographs, color vegetation indexes, wildfires

References

  1. Anderson H.B., Nilsen L., Tommervik H., Karlsen S.R., Nagai S., Cooper E.J. Using Ordinary Digital Cameras in Place of Near-Infrared Sensors to Derive Vegetation Indices for Phenology Studies of High Arctic Vegetation. Remote Sensing, 2016. V. 8. P. 847. DOI: 10.3390/rs8100847.
  2. Ayurzhanaev A.A., Alymbaeva Zh.B., Zharnikova M.A., Sodnomov B.V. On the Possibility of Assessing the Aboveground Phytomass of Steppe Vegetation Using Color Vegetation Indices (According to Data from Surveys from Unmanned Systems). Bulletin of the Buryat State University. Biology, Geography, 2021. V. 68. No. 4. P. 45–53 (in Russian). DOI: 10.18101/2587-7143-2021-4-45-53.
  3. Ayurzhanaev A.A., Ilyin Yu.M., Sodnomov B.V., Zharnikova M.A., Alymbaeva Zh.B. The Influence of the Survey Altitude and the Zenith Angle of the Sun on Wheat Vegetation Indices According to UAV Data. Bulletin of the Krasnoyarsk State Agrarian University, 2024. No. 5. P. 12–18 (in Russian). DOI: 10.36718/1819-4036-2024-5-12-18.
  4. Dara A., Baumann M., Hölzel N., Hostert P., Kamp J., Müller D., Ullrich B., Kuemmerle T. Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes. Ecosystems, 2020. V. 23. No. 3. DOI: 10.1007/s10021-019-00447-w.
  5. Diaz-Delgado R., Mücher S. Editorial of Special Issue “Drones for Biodiversity Conservation and Ecological Monitoring”. Drones, 2019. V. 3. P. 47. DOI: 10.3390/drones3020047.
  6. Dubinin M., Lushchekina A., Radeloff V. Climate, Livestock, and Vegetation: What Drives Fire Increase in the Arid Ecosystems of Southern Russia? Ecosystems, 2011. V. 14. P. 547–562. DOI: 10.1007/s10021-011-9427-9.
  7. Furukawa F., Laneng L.A., Ando H., Yoshimura N., Kaneko M., Morimoto J. Comparison of RGB and Multispectral Unmanned Aerial Vehicle for Monitoring Vegetation Coverage Changes on a Landslide Area. Drones, 2021. V. 5. P. 97. DOI: 10.3390/drones5030097.
  8. Jaya N.M.P., Harmayani K.D., Widhiawati A.R., Atmaja G.S., Jaya M.W. Spatial Analysis of Vegetation Density Classification in Determining Environmental Impacts Using UAV Imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022. V. V-3-2022. DOI: 10.5194/isprs-annals-V-3-2022-417-2022.
  9. Khoroshev A.V., Kalmykova O.G., Dusaeva G.Kh. Evaluation of the Normalized Differential Vegetation Index as a Source of Information on Aboveground Phytomass in Steppes. Earth Research from Space, 2023. No. 3. P. 27–43 (in Russian). DOI: 10.31857/S020596142303003X.
  10. Larrinaga A.R., Brotons L. Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery. Drones, 2019. V. 3. P. 6. DOI: 10.3390/drones3010006.
  11. Martinez J.L., Lucas-Borja M.E., Plaza-Alvarez P.A., Denisi P., Moreno M.A., Hernandez D., Gonzalez-Romero J., Zema D.A. Comparison of Satellite and Drone-Based Images at Two Spatial Scales to Evaluate Vegetation Regeneration after Post-Fire Treatments in a Mediterranean Forest. Applied Sciences, 2021. V. 11. P. 5423. DOI: 10.3390/app11125423.
  12. Pavleychik V.M., Chibilev A.A., Padalko Yu.A. Pyrological Situation in the Steppes of Northern Eurasia. Doklady Earth Sciences, 2022. V. 505. Part 2. P. 591–597. DOI: 10.1134/S1028334X22080141.
  13. Pavleichik V.M., Sivokhip Zh.T., Padalko Yu.A. Regional Features of the Formation of Hydrological Conditions in the Steppes of Northern Eurasia Based on FIRMS Data. InterCarto. InterGIS. Geoinformation Support for the Sustainable Development of Regions in a Crisis. Moscow: Faculty of Geography of Moscow State University, 2023. V. 29. Part 1. P. 423–436 (in Russian). DOI: 10.35595/2414-9179-2023-1-29-423-436.
  14. Pavleichik V.M., Yazykbaev E.R., Sivohip Zh.T., Padalko Yu.A. Features of the Formation and Implementation of Fire-Hazardous Situations in the Ural-Caspian Region During Abnormally Hot and Dry Years. Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Nauki o Zemle” (The Bulletin of Irkutsk State University. Series “Earth Sciences”), 2023. V. 43. P. 62–78 (in Russian). DOI: 10.26516/2073-3402.2023.43.62.
  15. Perez-Luque A.J., Ramos-Font M.E., Barbieri M.J.T., Perez C.T., Renta G.C., Cruz A.B.R. Vegetation Cover Estimation in Semi-Arid Shrublands after Prescribed Burning: Field-Ground and Drone Image Comparison. Drones, 2022. V. 6. P. 370. DOI: 10.3390/drones6110370.
  16. Shinkarenko S.S., Bartalev S.A. Analysis of the Influence of Species Composition, Projective Cover, and Phytomass of Arid Landscape Pasture Vegetation on Spectral Reflectance Properties Based on Ground Measurements. Current Problems in Remote Sensing of the Earth from Space, 2023. V. 20. No. 3. P. 176–192 (in Russian). DOI: 10.21046/2070-7401-2023-20-3-176-192.
  17. Shinkarenko S.S., Bartalev S.A. Analysis of the Relationship Between Structural and Spectral-Reflective Characteristics of Vegetation in Arid Grassland Landscapes. Current Problems in Remote Sensing of the Earth from Space, 2024. V. 21. No. 3. P. 171–187 (in Russian). DOI: 10.21046/2070-7401-2024-21-3-171-187.
  18. Shinkarenko S.S., Berdengalieva A.N., Doroshenko V.V., Naichuk Ya.A. An Analysis of the Dynamics of Areas Affected by Steppe Fires in Western Kazakhstan on the Basis of Earth Remote Sensing Data. Arid Ecosystems, 2023. V. 13. No. 1. P. 29–38. DOI: 10.1134/S2079096123010122.
  19. Talucci A.C., Forbath E., Kropp H., Alexander H.D., DeMarco J., Paulson A.K., Zimov N.S., Zimov S., Loranty M.M. Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sensing, 2020. V. 12. P. 2970. DOI: 10.3390/rs12182970.

For citation: Pavleichik V.M. The experience of using NDVI and color vegetation indexes of UAVs to identify phytocenotic parameters of steppe vegetation. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 2. P. 100–116. DOI: 10.35595/2414-9179-2025-2-31-100-116 (in Russian)