Evaluation of satellite images with different spectral resolution for analyzing the vegetation cover condition

DOI: 10.35595/2414-9179-2025-2-31-5-20

View or download the article (Rus)

About the Authors

Elena A. Baldina

Lomonosov Moscow State University,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: baldina@geogr.msu.ru

Polina G. Ilyushina

Lomonosov Moscow State University,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: ilyushinapg@my.msu.ru

Petr K. Vasiliev

Lomonosov Moscow State University,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: a49t@yandex.ru

Abstract

The increase in the number of hyperspectral imaging systems in the last decade necessitates the search for methodological approaches to their processing both as an independent source of information on the state of the Earth surface objects and in complex analysis together with other data. The analysis was performed on two pairs of images of the Near Moscow area, acquired in the same timeframe: PRISMA 22.06.2021 and 25.08.2022, Sentinel-2 23.06.2021 and 24.08.2022 with close spatial resolution: 20 m for Sentinel-2 images and 30 m for PRISMA, but differing in spectral resolution. Both terms were characterized to some extent by abnormal weather conditions in the periods preceding the survey: high temperatures in both dates, but different precipitation, with record low precipitation in August 2022 (drought was observed). This proximity of survey dates and similar spatial resolution allowed for a comparative analysis of the two types of data to identify vegetation stress observed under drought conditions. The state of vegetation cover at each of the dates was assessed using images from both systems by calculating various indices characterizing both the total biomass (NDVI) and the content of some of the most important biochemical indicators (MSI—Moisture Stress Index, pigments—anthocyanins and carotenoids) indicating the manifestation of vegetation stress. The obtained values of NDVI and MSI indices calculated from Sentinel-2 data are significantly lower than those obtained from PRISMA data processing, which may be due to differences in spatial resolution and width of spectral channels. Comparison of NDVI and MSI indices for each of the survey systems between the two dates show a similar situation of decreasing or increasing values as a response to different weather conditions—to the drought in August 2022. There is a slight decrease in green mass and moisture content, especially noticeable for herbaceous vegetation and deciduous forests, while this effect is not noticeable for coniferous forests. Indices of anthocyanins and carotenoids content do not show unambiguous changes between the survey dates.

Keywords

hyperspectral images, PRISMA vegetation indices, Sentinel-2, weather conditions

References

  1. Acito N., Diani M., Corsini G. PRISMA Spatial Resolution Enhancement by Fusion with Sentinel-2 Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022. V. 15. P. 62–79. DOI: 10.1109/JSTARS.2021.3132135.
  2. Alicandro M., Candigliota E., Dominici D., Immordino F., Masin F., Pascucci N., Quaresima R., Zollini S. Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy) Land (Basel) 11.2022. DOI: 10.3390/land11112070.
  3. Belgiu M., Marshall M., Boschetti M., Pepe M., Stein A., Nelson A. PRISMA and Sentinel-2 Spectral Response to the Nutrient Composition of Grains. Remote Sensing of Environment, 2023. V. 292. P. 113567. DOI: 10.1016/j.rse.2023.113567.
  4. Caputi E., Delogu G., Patriarca A., Perretta M., Mancini G., Boccia L., Recanatesi F., Ripa M.N. Comparison of Tree Typologies Mapping Using Random Forest Classifier Algorithm of PRISMA and Sentinel-2 Products in Different Areas of Central Italy. Remote Sensing, 2025. V. 17. P. 356. DOI: 10.3390/rs17030356.
  5. Cherepanov A.S., Druzhinina E.G. Spectral Properties of Vegetation and Vegetation Indices. Geomatics, 2009. No. 3. P. 28–32 (in Russian).
  6. De Luca G., Carotenuto F., Genesio L., Pepe M., Toscano P., Boschetti M., Miglietta F., Gioli B. Improving PRISMA Hyperspectral Spatial Resolution and Geolocation by Using Sentinel-2: Development and Test of an Operational Procedure in Urban and Rural Areas. ISPRS Journal of Photogrammetry and Remote Sensing, 2024. V. 215. P. 112–135. DOI: 10.1016/j.isprsjprs.2024.07.003.
  7. Gitelson A.A., Keydan G.P., Merzlyak M.N. Three-Band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and Anthocyanin Contents in Higher Plant Leaves. Geophysical Research Letters, 2006. V. 33. P. LL11402. DOI: 10.1029/2006GL026457.
  8. Kim M., Park S., Anderson C., Stensaas G.L. System Characterization Report on PRecursore IperSpettrale della Missione Applicativa (PRISMA). Chapter K of: Ramaseri Chandra S.N., comp., System Characterization of Earth Observation Sensors. U.S. Geological Survey Open-File Report, 2021. 28 p. DOI: 10.3133/ofr20211030K.
  9. Marshall M., Nelson A., Belgiu M., Boschetti M., Pepe M., Stein A. Field-Level Crop Yield Estimation with PRISMA and Sentinel-2. ISPRS Journal of Photogrammetry and Remote Sensing, 2022. V. 187. P. 191–210. DOI: 10.1016/j.isprsjprs.2022.03.008.
  10. Mitrofanov E.M. Development of Methodology of Geospatial Analysis of Forest Vegetation Degradation by Hyperspectral Remote Sensing Data. Author’s abstract of dissertation for PhD of Technical Sciences. Moscow, 2013. 24 p. (in Russian).
  11. Niroumand-Jadidi M., Bovolo F., Bruzzone L. Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in a Turbid Lake and Comparison with Sentinel-2. Remote Sensing, 2020. V. 12. P. 3984. DOI: 10.3390/rs12233984.
  12. Panwar E., Singh D., Kumar Sharma A., Kumar H.A. Monitoring Wheat Crop Biochemical Responses to Random Rainfall Stress Using Remote Sensing: A Multi-Data Approach. IEEE Access, 2024. V. 12. P. 174144–174157. DOI: 10.1109/ACCESS.2024.3494867.
  13. Roberts D., Roth Keely L., Wetherley E., Susan K., Meerdink S., Ryan L., Perroy R. Hyperspectral Vegetation Indices Book Chapter “Hyperspectral Indices and Image Classifications for Agriculture and Vegetation”, 2nd Edition. CRC Press, 2018.
  14. Rysin L.P. Forests of the Moscow Region. Department of Biological Sciences of the Russian Academy of Sciences, Institute of Forestry. Moscow: KMK Scientific Press Ltd., 2012. 255 p. (in Russian).
  15. Savorskiy V.P., Kashnitskiy A.V., Konstantinova A.M., Balashov I.V., Krasheninnikova Yu.S., Tolpin V.A., Maklakov S.M., Savchenko E.V. Capabilities of Hyperspectral Indices Analysis of the “Vega Constellation” Remote Monitoring Information Systems. Current Problems in Remote Sensing of the Earth from Space, 2016. V. 13. No. 3. P. 28–45 (in Russian). DOI: 10.21046/2070-7401-2016-13-3-28-45.
  16. Shaik R.U., Periasamy S., Zeng W. Potential Assessment of PRISMA Hyperspectral Imagery for Remote Sensing Applications. Remote Sensing, 2023. V. 15. P. 1378. DOI: 10.3390/rs15051378.
  17. Timofeev V.P. Forests of the Moscow Region. Forests of the USSR. In 5 volumes. V. 2. Subzone of Southern Taiga and Mixed Forests. Moscow: Nauka, 1966. P. 277–314 (in Russian).
  18. Vangi E., D’Amico G., Francini S., Giannetti F., Lasserre B., Marchetti M., Chirici G. The New Hyperspectral Satellite PRISMA: Imagery for Forest Types Discrimination. Sensors, 2021. V. 21. P. 1182. DOI: 10.3390/s21041182.
  19. Vegetation of the European Part of the USSR. Academy of Sciences of the USSR, V.L. Komarov Botanical Institute. Leningrad: Nauka, 1980. 429 p. (in Russian).
  20. Vegetation of the Moscow Region. Scale 1:200 000. Explanatory Text and Legend to the Map. Moscow: ECOR, 1996. (in Russian).
  21. Xi X., Chen M., Wang Y., Yang H. Band-Optimized Bidirectional LSTM Deep Learning Model for Bathymetry Inversion. Remote Sensing, 2023. V. 15. P. 3472. DOI: 10.3390/rs15143472.
  22. Zeng Y., Hao D., Huete A., Dechant B., Berry J., Chen M.J., Joiner J., Frankenberg Ch., Bond-Lamberty B., Ryu Y., Xiao J., Asrar R.G., Chen M. Optical Vegetation Indices for Monitoring Terrestrial Ecosystems Globally. Nature Reviews Earth & Environment, 2022. V. 3. P. 477–493. DOI: 10.1038/s43017-022-00298-5.

For citation: Baldina E.A., Ilyushina P.G., Vasiliev P.K. Evaluation of satellite images with different spectral resolution for analyzing the vegetation cover condition. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 2. P. 5–20. DOI: 10.35595/2414-9179-2025-2-31-5-20 (in Russian)