View or download the article (Eng)
About the Authors
Alijon O. Khayitmurodov
4, Universitetskaya str., Tashkent, 100174, Uzbekistan,
E-mail: xayitmurodovalijon97@gmail.com
Tatiana I. Kharitonova
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: kharito2010@gmail.com
Mirkomil Gudalov
4, Sh. Rashidova ave., Jizzakh, Jizzakh Region, 130100, Uzbekistan,
E-mail: mirkomilgudalov78@gmail.com
Nurmukhamad D. Kosimov
4, Sh. Rashidova ave., Jizzakh, Jizzakh Region, 130100, Uzbekistan,
E-mail: qosimovnurmuxamad1@gmail.com
Abstract
This study investigates the various types of green spaces in Tashkent, analyzes their spatial distribution, and assesses the ecosystem services they provide. The extent of green space coverage across the city was quantified using the Normalized Difference Vegetation Index (NDVI). To evaluate the cooling efficiency of green spaces, a surface temperature map was generated by processing the red, near-infrared, and thermal infrared bands from Landsat-8 satellite imagery. The InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model was utilized to assess both the urban cooling effect and the flood mitigation capacity of green areas. The findings indicate that green spaces in multi-storey residential zones provide greater cooling and flood mitigation services than those in traditionally built neighborhoods. They also exhibit significantly higher cooling efficiency during the summer, with the maximum Heat Mitigation Index reaching 0.83. Furthermore, the flood mitigation potential of green spaces in Tashkent depends on the city’s river terrace formations. The terraces of the Chirchik River correspond to A, C, and D hydrological soil groups with varying infiltration rates. Green spaces on the floodplain and terrace I (A group) exhibit the highest infiltration and thus the greatest potential for reducing flood risks, whereas terraces II and III (C group) and IV and V (D group) show lower infiltration. Additionally, green spaces on terraces II and III (C group) have higher flood mitigation potential than those on terraces IV and V (D group).
Keywords
References
- Abdunazarov U., Sabitova N., Stelmakh A., Kholdorova G., Kayumov M. Morphological Features of Buried Soils of Loess Formations of the Prytashkent Region of Uzbekistan. Journal of Critical Reviews, 2020. V. 7. Iss. 4. P. 361–370.
- Abdurakhmonov S., Bekanov K., Embergenov N., Eshnazarov D. Hydrological Modeling of Agricultural Lands on the Basis of GIS Technologies (On the Example of the Chimbay District of the Republic of Karakalpakstan). E3S Web of Conferences, 2023. V. 386. Art. 02004. DOI: 10.1051/e3sconf/202338602004.
- Aghaloo K., Sharifi A. Balancing Priorities for a Sustainable Future in Cities: Land Use Change and Urban Ecosystem Service Dynamics. Journal of Environmental Management, 2025. V. 382. Art. 125460. DOI: 10.1016/j.jenvman.2025.125460.
- Agonafir C.A Review of Recent Advances in Urban Flood Research. Water Security, 2023. V. 19. Art. 100141. DOI: 10.1016/j.wasec.2023.100141.
- Auerswald K. Reassessment of the Hydrologic Soil Group for Runoff Modelling. Soil and Tillage Research, 2021. V. 212. Art. 105034. DOI: 10.1016/j.still.2021.105034.
- Azadgar A. Optimizing Nature-Based Solutions for Urban Flood Risk Mitigation: A Multi-Objective Genetic Algorithm Approach in Gdańsk, Poland. Science of The Total Environment, 2025. V. 963. Art. 178303. DOI: 10.1016/j.scitotenv.2024.178303.
- Bekanov K., Safarov E., Prenov S., Uvrayimov S. Application of Geoinformation Technologies and Remote Sensing to Detect Land Use and Changes in the Soil Cover Caused by the Drying of the Aral Sea. Periodico Tche Quimica, 2020. V. 17. Iss. 36. P. 390–401. DOI: 10.52571/PTQ.v17.n36.2020.390_Periodico36_pgs_390_401.pdf.
- Chernisheva M., Urazmetov I., Ulengov R., Yarullina L., Sharipov S. Geoinformation Technologies as a Means of Developing. International Multidisciplinary Scientific GeoConference: Surveying Geology and Mining Ecology Management (SGEM), 2024. V. 24. Iss. 5.1. P. 759–764.
- Costadone L. Co-Creating Urban Ecosystem Accounting: Physical and Monetary Accounts of Runoff Retention Service Provided by Urban Green Spaces. Ecosystem Services, 2024. V. 65. Art. 101576. DOI: 10.1016/j.ecoser.2023.101576.
- Fazilova D., Arabov O. Vertical Accuracy Evaluation, Free Access Digital Elevation Models (DEMs): Case of Fergana Valley in Uzbekistan. Earth Sciences Research Journal, 2023. V. 27. Iss. 2. P. 85–91. DOI: 10.15446/esrj.v27n2.103801.
- Forman R.T.T. Urban Ecology: Science of Cities. Cambridge: Cambridge University Press, 2014. P. 173–190. DOI: 10.1017/CBO9781139030472.
- Gao K. The Use of Green Infrastructure and Irrigation in the Mitigation of Urban Heat in a Desert City. Building Simulation, 2024. V. 17. No. 5. P. 679–694.
- Gao Y. Spatio-Temporal Evolution and Scenario-Based Optimization of Urban Ecosystem Services Supply and Demand: A Block-Scale Study in Xiamen, China. Ecological Indicators, 2025. V. 172. Art. 113289. DOI: 10.1016/j.ecolind.2025.113289.
- Hashim H., Latif Z.A., Adnan N.A. Urban Vegetation Classification with NDVI Threshold Value Method with Very High Resolution (VHR) Pleiades Imagery. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2019. V. XLII-4/W16. DOI: 10.5194/isprs-archives-XLII-4-W16-237-2019.
- Ibragimova R.A., Sharipov S.M., Abdunazarov U.K., Mirakmalov M.T., Ibraimova A.A. Aral Physical and Geographic District, Uzbekistan and Kazakhstan. Asia Life Sciences, 2019. V. 1. P. 227–235.
- Jones L. A Typology for Urban Green Infrastructure to Guide Multifunctional Planning of Nature-Based Solutions. Nature-Based Solutions, 2022. V. 2. Art. 100041. DOI: 10.1016/j.nbsj.2022.100041.
- Jumanov A., Khafizova Z., Ibraimova A., Ismailova Z., Jovliyeva D., Absoatov U. Study of the Dynamics of LULC Change using Remote Sensing Data and GIS Technologies (Case Study of the Kashkadarya Region). E3S Web of Conferences, 2024. V. 590. Art. 04002. DOI: 10.1051/e3sconf/202459004002.
- Kumar P. Urban Heat Mitigation by Green and Blue Infrastructure: Drivers, Effectiveness, and Future Needs. The Innovation, 2024. V. 5. Iss. 2. Art. 100588. DOI: 10.1016/j.xinn.2024.100588.
- Li L. Planning Green Infrastructure to Mitigate Urban Surface Water Flooding Risk—A Methodology to Identify Priority Areas Applied in the City of Ghent. Landscape and Urban Planning, 2020. V. 194. Art. 103703. DOI: 10.1016/j.landurbplan.2019.103703.
- Mukhamedjanov A., Isamukhamedova D., Tang B.-S. Green Spaces for Summer Cooling: Case Study of Tashkent, Uzbekistan. International Review for Spatial Planning and Sustainable Development, 2024. V. 12. Iss. 2. P. 163–180. DOI: 10.14246/irspsd.12.2_163.
- Naserikia M. Land Surface and Air Temperature Dynamics: The Role of Urban Form and Seasonality. Science of the Total Environment, 2023. V. 905. Art. 167306. DOI: 10.1016/j.scitotenv.2023.167306.
- Ruziev A., Yusupjonov O., Földváry L., Okhunov Z., Rakhimov S., Rakhmonov S., Yakubov G. Development Stages of the Geodetic Network in Tashkent City. E3S Web of Conferences, 2024. V. 590. Art. 03006. DOI: 10.1051/e3sconf/202459003006.
- Sabitova N., Ruzikulova O., Aslanov I. Experience in Creating a Soil-Reclamation Map of the Zarafshan River Valley Based on the System Analysis of Lithodynamic Flow Structures. E3S Web of Conferences, 2021. V. 227. Art. 03003. DOI: 10.1051/e3sconf/202122703003.
- Sabitova N.I., Stelmakh A.G., Tajibaeva N.R. Mapping of Landslides and Landslide Processes in Uzbekistan Using Relief Plastics (On the Example of the Chirchik Basin). InterCarto. InterGIS. Proceedings of the International Conference. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2020. V. 26. Part 1. P. 572–583. DOI: 10.35595/2414-9179-2020-1-26-572-583.
- Sharipov S., Gudalov M., Nematov O., Tovbaev G., Kasimov N., Mirzaeva A., Khazratqulov K. Effects and Consequences of Climate Change on the Natural Conditions of Mirzachol District. Natural and Engineering Sciences, 2024. V. 9. Iss. 2. P. 257–269. DOI: 10.28978/nesciences.1574448.
- Sharipov S., Khayitmurodov A. The Impacts of Green Spaces on Mitigating the Urban Hot Island Effect in the City of Tashkent. BIO Web of Conferences, 2024. V. 105. Art. 06013. DOI: 10.1051/bioconf/202410506013.
- Tojiyeva Z., Omanova K., Pardayev N., Jaloliddinov N., Musayev B., Khursanov S. Regional Characteristics in the Dynamics and Location of the Rural Population of the Republic of Uzbekistan. E3S Web of Conferences, 2024. V. 491. Art. 04004. DOI: 10.1051/e3sconf/202449104004.
- Umilia E., Firmansyah F., Setiawan R.P. Assessment of Regulating Ecosystem Services in Surabaya City. IOP Conference Series: Earth and Environmental Science, 2020. V. 562. Art. 012029. DOI: 10.1088/1755-1315/562/1/012029.
- Zhang P. Supply-Demand Risk Assessment of Urban Flood Resilience from the Perspective of the Ecosystem Services: A Case Study in Nanjing, China. Ecological Indicators, 2025. V. 173. Art. 113397. DOI: 10.1016/j.ecolind.2025.113397.
- Zhou X. Bridging the Ecosystem Service Supply-Demand Imbalance: Spatial Flow Patterns and Driving Forces in the Yangtze River Midstream Urban Agglomeration, China. Ecological Indicators, 2025. V. 175. Art. 113531. DOI: 10.1016/j.ecolind.2025.113531.
For citation: Khayitmurodov A.O., Kharitonova T.I., Gudalov M., Kosimov N.D. Assessing cooling and flood mitigation ecosystem services of urban green spaces in Tashkent using GIS technologies. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 1. P. 689–705. DOI: 10.35595/2414-9179-2025-1-31-689-705









