View or download the article (Eng)
About the Authors
Ilkhomjon Abdullaev
4, Universitetskaya str., Tashkent, 100174, Uzbekistan,
E-mail: ilkhomjon.abdullaev@gmail.com
Lola Gulyamova
2, Universitetskaya str., Tashkent, 100174, Uzbekistan,
E-mail: lolagulyam@gmail.com
Nargiza Abdullaeva
2, Universitetskaya str., Tashkent, 100174, Uzbekistan,
E-mail: abdullaeva.nargiza@tdtu.uz
Sattarbergan Avezov
14, Kh. Alimdjana str., Tashkent, 220100, Uzbekistan,
E-mail: avezovsattarbergan@gmail.com
Abdujalil Muminov
2a, Yukori Karakamish str., Tashkent, 100190, Uzbekistan,
E-mail: muminov010@gmail.com
Tumaris Ramanova
4, Universitetskaya str., Tashkent, 100174, Uzbekistan,
E-mail: tumarisramanova@mail.ru
Abstract
Urbanization alters the thermal characteristics of cities and amplifies the Urban Heat Island (UHI) effect, which has implications for environmental sustainability and human well-being. This study analyzes the spatiotemporal variability of Land Surface Temperature (LST) in Tashkent, Uzbekistan, between 2000 and 2024 using multi-temporal Landsat imagery and geospatial techniques in ArcGIS Pro. LST and the Normalized Difference Vegetation Index (NDVI) were extracted to evaluate thermal dynamics and vegetation changes across the city’s 12 administrative districts. The results indicate a persistent increase in LST over the 24-year period, with maximum intensification in the central and eastern districts, particularly Mirabad, Yashnabad, and Shaykhontohur. Concurrently, NDVI values declined across most districts, reflecting substantial vegetation loss, especially in urban cores characterized by dense built-up areas. In contrast, peripheral districts such as Bektemir and Yangihayot remained relatively cooler, underscoring the role of vegetation and lower construction density in regulating surface heat. Correlation analysis confirmed a strong inverse relationship between LST and NDVI, emphasizing the importance of urban green cover in mitigating thermal stress. These findings highlight the need for evidence-based urban planning strategies, including green infrastructure development and vegetation restoration, to reduce heat exposure and enhance climate resilience in rapidly expanding dryland cities such as Tashkent.
Keywords
References
- Abdullaev I., Nasirov A., Pirimov J., Abdullaeva N. Integrated Information System for Cadastre based on GIS and Web Technologies. 2021 International Conference on Information Science and Communications Technologies (ICISCT), 2022. P. 1–3. DOI: 10.1109/ICISCT55600.2022.10146844.
- Abdullaev I., Nasirov A., Yakubov G., Abdullaeva N. Application of GIS Technologies in the Investigation of Soil Salinity. E3S Web of Conferences, 2023. V. 386. Art. 01009. DOI: 10.1051/e3sconf/202338601009.
- Buyantuyev A., Wu J. Urban Heat Islands and Landscape Heterogeneity: Linking Spatiotemporal Variations in Surface Temperatures to Land-Cover and Socioeconomic Patterns. Landscape Ecology, 2009. V. 25. No. 1. P. 17–33. DOI: 10.1007/S10980-009-9402-4.
- Imhoff M.L., Zhang P., Wolfe R.E., Bounoua L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental USA. Remote Sensing of Environment, 2010. V. 114. No. 3. P. 504–513. DOI: 10.1016/j.rse.2009.10.008.
- Jenerette G.D., Harlan S.L., Stefanov W.L., Martin C.A. Ecosystem Services and Urban Heat Riskscape Moderation: Water, Green Spaces, and Social Inequality in Phoenix, USA. Ecological Applications, 2011. V. 21. No. 7. P. 2637–2651. DOI: 10.1890/10-1493.1.
- Li Zh.-L., Tang B.-H., Wu H., Ren H., Yan G., Wan Z., Trigo I.F., Sobrino J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sensing of Environment, 2013. V. 131. P. 14–37. DOI: 10.1016/j.rse.2012.12.008.
- Oppong J. How to Use ArcGIS Pro to Calculate Land Surface Temperature (LST) from Landsat Imagery. Geography Realm, 2024. Web resoource: https://www.geographyrealm.com/how-to-use-arcgis-pro-to-calculate-land-surface-temperature-lst-from-landsat-imagery/ (accessed 07.07.2025).
- Rasul A., Balzter H., Ibrahim G.R.F., Hameed H.M., Wheeler J., Adamu B., Ibrahim S., Najmaddin P.M. Applying Built-Up and Bare-Soil Indices from Landsat-8 to Cities in Dry Climates. Land, 2018. V. 7. No. 3. Art. 81. DOI: 10.3390/land7030081.
- Sharipov S., Khayitmurodov A. The Impacts of Green Spaces on Mitigating the Urban Hot Island Effect in the City of Tashkent. BIO Web of Conferences, 2024. V. 105. Art. 06013. DOI: 10.1051/bioconf/202410506013.
- Sobrino J.A., Jiménez-Muñoz J.C., Paolini L. Land Surface Temperature Retrieval from Landsat TM 5. Remote Sensing of Environment, 2004. V. 90. No. 4. P. 434–440. DOI: 10.1016/j.rse.2004.02.003.
- Voogt J.A., Oke T.R. Thermal Remote Sensing of Urban Climates. Remote Sensing of Environment, 2003. V. 86. No. 3. P. 370–384. DOI: 10.1016/S0034-4257(03)00079-8.
- Weng Q. Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS Journal of Photogrammetry and Remote Sensing, 2009. V. 64. No. 4. P. 335–344. DOI: 10.1016/j.isprsjprs.2009.03.007.
- Zhou D., Zhao S., Liu S., Zhang L., Zhu C. Surface Urban Heat Island in China’s 32 Major Cities: Spatial Patterns and Drivers. Remote Sensing of Environment, 2014. V. 152. P. 51–61. DOI: 10.1016/j.rse.2014.05.017.
For citation: Abdullaev I., Gulyamova L., Abdullaeva N., Avezov S., Muminov A., Ramanova T. Assessment of land surface temperature dynamics in Tashkent (2000–2024): a spatiotemporal analysis based on satellite data. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 1. P. 494–506. DOI: 10.35595/2414-9179-2025-1-31-494-506









