Mapping of forests in icings zones of the Selenga River Basin

DOI: 10.35595/2414-9179-2025-1-31-341-354

View or download the article (Rus)

About the Authors

Bator V. Sodnomov

Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences,
6, Sakhyanovoy str., Ulan-Ude, 670047, Russia,
E-mail: sodnomov@binm.ru

Alexander A. Ayurzhanaev

Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences,
6, Sakhyanovoy str., Ulan-Ude, 670047, Russia,
E-mail: aaayurzhanaev@yandex.ru

Vladimir N. Chernykh

Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences,
6, Sakhyanovoy str., Ulan-Ude, 670047, Russia,
E-mail: geosibir@yandex.ru

Sergey G. Andreev

Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences,
6, Sakhyanovoy str., Ulan-Ude, 670047, Russia,
E-mail: baikal.andreev@gmail.com

Saygaa A. Sat

Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences,
6, Sakhyanovoy str., Ulan-Ude, 670047, Russia,
E-mail: saygaa@mail.ru

Endon Zh. Garmaev

Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences,
6, Sakhyanovoy str., Ulan-Ude, 670047, Russia,
E-mail: info@binm.ru

Abstract

Icings are cryospheric features that exert a significant influence on natural ecosystems and engineering infrastructure. Particular interest is drawn to icings located within forested areas, as trees can respond to their impacts, recording information about the dynamics of icing processes in their growth rings. This study focuses on mapping forest stands within icing-affected zones to identify promising areas for future dendrochronological investigations of icing processes in the transboundary Selenga River Basin. For the purpose of icing mapping, the study employed medium-resolution satellite remote sensing data (Landsat-8, Sentinel-2, Kanopus-V). To assess the presence of forest vegetation within icing zones, three global canopy height products were utilized: ETH (based on Sentinel-2 and GEDI), GFCH (based on Landsat and GEDI), and GCHM (an AI-based model derived from satellite imagery). The analysis revealed that approximately 65 % of the mapped icings are covered by forest vegetation. These forested icings are predominantly located in the Russian part of the basin, particularly on mountain slopes, where larch and cedar-fir forests are dominant. In contrast, forested icings are significantly less common in the Mongolian part of the basin and are mainly represented by sparse larch stands. At a key site a high-resolution digital elevation model with 0.1 m accuracy was created based on UAV-based aerial photography. This dataset was used to validate the global canopy height models. Comparative analysis at the test site demonstrated that global models tend to overestimate tree heights when compared to values derived from UAV. As expected, the model with the higher spatial resolution more accurately represented the horizontal structure of the forest canopy, though it still exhibited substantial height inaccuracies. Nevertheless, these global models proved useful for identifying areas containing trees that are potentially suitable for dendrochronological analysis. Thus, the spatial database of forested icing zones developed in this study can serve as a foundation for planning the collection of tree-ring samples and conducting further dendrochronological research on icing processes throughout the Selenga River Basin.

Keywords

icings, dendrochronology, Selenga River basin, mapping, forest height

References

  1. Alekseyev V.R. Icings Science: A Dictionary and Handbook. Novosibirsk: Publishing House of the Siberian Branch of the Russian Academy of Sciences, 2007. 438 p. (in Russian).
  2. Alekseyev V.R. Cryogenesis and Geodynamics of Icing Valleys. Geodynamics & Tectonophysics, 2015. V. 6. No. 2. P. 171–224 (in Russian). DOI: 10.5800/GT-2015-6-2-0177.
  3. Alekseyev V.R. Long-Term Variability of Spring Icings-Taryns. Ice and Snow, 2016. V. 56. No. 1. P. 73–92 (in Russian). DOI: 10.15356/2076-6734-2016-1-73-92.
  4. Alekseyev V.R., Makaryeva O.M., Shikhov A.N., Nesterova N.V., Ostashov A.A., Zemlyanskova A.A. Atlas of Giant Icings-Taryns of the North-East of Russia. Novosibirsk: Publishing House of the Melnikov Permafrost Institute of the Siberian Branch of the Russian Academy of Sciences, 2022. 302 p. (in Russian).
  5. Andreev S.G., Ayurzhanaev A.A., Batotsyrenov E.A., Suprunenko A.G., Sat S.A., Sodnomov B.V., Chernykh V.N. Dendrochronological Study of a Staged Barn of the 19th Century. (Ethnographic Museum of the Peoples of Transbaikalia, Ulan-Ude). Journal of Siberian Federal University. Biology, 2022. V. 15. No. 2. P. 279–292 (in Russian).
  6. Belokopytova L., Zhirnova D., Kostyakova T., Babushkina E. Dynamics of Moisture Regime and its Reconstruction from a Tree-Ring Width Chronology of Pinus Sylvestris in the Downstream Basin of the Selenga River, Russia. Journal of Arid Land, 2018. V. 10. P. 877–891. DOI: 10.1007/s40333-018-0025-y.
  7. Bigio E.R., Swetnam T.W., Baisan C.H., Guiterman C.H., Kisilyakhov Ye.K., Andreev S.G., Batotsyrenov E.A., Ayurzhanaev A.A. The Influence of Land-Use Activities and Regional Drought on Historical Fire Regimes of Buryatia, Siberia. Environmental Research Letters, 2022. V. 17. No. 5. Art. 054043. DOI: 10.1088/1748-9326/ac6964.
  8. Bykov N.I., Rygalova N.V., Shigimaga A.A. Specific Peculiarities of Woody-Tree Radial Growth in Icing Areas of the Altai Mountains. Acta Biologica Sibirica, 2023. V. 9. P. 987–1001. DOI: 10.5281/zenodo.10255096.
  9. Bykov N.I., Rygalova N.V., Shigimaga A.A. Dendrochronological Analysis of Coniferous Species in Avalanche Catchments of North-Western Altai (Korgon River Basin). Ice and Snow, 2024. V. 64. No. 1. P. 81–95 (in Russian). DOI: 10.31857/S2076673424010066.
  10. Chernykh V.N. Distribution and Dynamics of Icings in the Selenga Middle Mountains. Izvestiya Russkogo Geograficheskogo Obshestva (Proceedings of the Russian Geographical Society), 2024. V. 156. No. 2. P. 155–168 (in Russian). DOI: 10.31857/S0869607124020055.
  11. Chernykh V.N., Garmaev E.Zh. Monitoring Studies of Icings in the Basins of Small Rivers in the Central Part of the Selenga Middle Mountains. Regional Environmental Issues, 2023. No. 2. P. 36–41 (in Russian). DOI: 10.24412/1728-323X-2023-2-36-41.
  12. Chernykh V., Shikhov A., Ayurzhanaev A., Sodnomov B., Tsydypov B., Zharnikova M., Gurzhapov B., Garmaev E., Dashtseren A. Icings in the Selenga River Basin. Journal of Maps, 2024. V. 20. No. 1. Art. 2340994. DOI: 10.1080/17445647.2024.2340994.
  13. Chernykh V.N., Tsydypov B.Z., Sodnomov B.V., Ayurzhanaev A.A., Zharnikova M.A., Gurzhapov B.O., Garmaev E.Zh. Icings in the Uda River Basin (Western Transbaikalia): Features of Modern Distribution and Possibilities of Use. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2024. V. 335. No. 8. P. 161–173 (in Russian). DOI: 10.18799/24131830/2024/8/4432.
  14. Davi N., Jacoby G., Fang K., Li J., D’Arrigo R., Baatarbileg N., Robinson D. Reconstructing Drought Variability for Mongolia Based on a Large-Scale Tree Ring Network: 1520–1993. Journal of Geophysical Research, 2010. V. 115. Art. D22103. DOI: 10.1029/2010JD013907.
  15. Ecological Atlas of the Lake Baikal Basin. Irkutsk: Publishing House of the V.B. Sochava Institute of Geography of the Siberian Branch of the Russian Academy of Sciences, 2015. 145 p. (in Russian).
  16. Garmaev E.Zh., Khristoforov A.V., Tsydypov B.Z., Ayurzhanaev A.A., Andreev S.G., Sodnomov B.V., Zhamyanov D.Ts.-D. The Impact of Global Climate Change on the Water Runoff of the Transboundary Selenga River and General Principles of Using its Water Resources. Water Sector of Russia: Problems, Technologies, Management, 2022. No. 2. P. 80–94 (in Russian). DOI: 10.35567/19994508_2022_2_7.
  17. Gavrilova M.K. Changes in the Modern Climate of the Permafrost Region in Asia. Review of the State and Trends of Climate Change in Yakutia. Yakutsk: Yakutsk Branch of the Siberian Branch of the Russian Academy of Sciences, 2003. P. 13–18 (in Russian).
  18. Geocryology of the USSR. Eastern Siberia and the Far East. Moscow: Nedra, 1989. 515 p. (in Russian).
  19. Hydrogeology of the USSR. V. XXII. Buryat ASSR. Moscow: Nedra, 1970. 432 p. (in Russian).
  20. Lang N., Jetz W., Schindler K., Wegner J.D. A High-Resolution Canopy Height Model of the Earth. Nature Ecology & Evolution, 2023. V. 7. P. 1778–1789. DOI: 10.1038/s41559-023-02206-6.
  21. Markov M.L., Vasilenko N.G., Gurevich E.V. Icings of the BAM Zone: Expeditionary Research. St  Petersburg: Nestor-History, 2016. 320 p. (in Russian).
  22. Nikolaev A.N. Dendrochronological Studies of Icings in Central Yakutia. Ice and Snow, 2010. No. 1 (109). P. 93–102 (in Russian). DOI: 10.5281/zenodo.10255096.
  23. Pederson N., Hessl A.E., Baatarbileg N., Anchukaitis K.J., Di Cosmo N. Pluvials, Droughts, the Mongol Empire, and Modern Mongolia. Proceedings of the National Academy of Sciences, 2014. V. 111 (12). P. 4375–4379. DOI: 10.1073/pnas.1318677111.
  24. Pomortsev O.A., Kashkarov E.P., Popov V.F. Icings: Global Warming and Icings Formation Processes (Rhythmic basis of long-term forecast). Vestnik of North-Eastern Federal University, 2010. V. 7. No. 2. P. 40–48 (in Russian).
  25. Pomortsev O.A., Trofimtsev Yu.I., Efremov V.S., Pomortseva A.A. Regression Models of Icings Dynamics Based on Dendroindication Data. Vestnik of North-Eastern Federal University, 2017. No. 3 (59). P. 58–70 (in Russian).
  26. Potapov P., Li X., Hernandez-Serna A., Tyukavina A., Hansen M.C., Kommareddy A., Pickens A., Turubanova S., Tang H., Silva C.E., Armston J., Dubayah R., Blair J.B., Hofton M. Mapping and Monitoring Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sensing of Environment, 2020. V. 253. Iss. 4. Art. 112165. DOI: 10.1016/j.rse.2020.112165.
  27. Tolan J., Yang H.I., Nosarzewski B., Couairon G., Vo H.V., Brandt J., Spore J., Majumdar S., Haziza D., Vamaraju J., Moutakanni T., Bojanowski P., Johns T., White B., Tiecke T., Couprie C. Very High-Resolution Canopy Height Maps from RGB Imagery Using Self-Supervised Vision Transformer and Convolutional Decoder Trained on Aerial Lidar. Remote Sensing of Environment, 2024. V. 300. Art. 113888. DOI: 10.1016/j.rse.2023.113888.
  28. Ulzetueva I.D., Gomboev B.O. State of Surface Waters in the Selenga River Basin. Nature of Inner Asia, 2016. No. 1. P. 61–68 (in Russian). DOI: 10.18101/2542-0623-2016-1-61-68.
  29. Walther M., Batsaikhan V., Dashtseren A., Jambaljav Y., Temujin Kh., Ulanbayar G., Kamp U. The Formation of Aufeis and Its Impact on Infrastructure around Ulaanbaatar, North-Central Mongolia. Exploration into the Biological Resources of Mongolia, 2021. V. 14. P. 385–398.
  30. Zemlyanskova A.A., Shikhov A.N., Makaryeva O.M., Nikitina P.A. The Patterns of Spring Aufeis Distribution, Their Relation with River Runoff Formation and Hazardous Phenomena in the Magadan Region. Water Sector of Russia: Problems, Technologies, Management, 2025. No. 1. P. 57–75 (in Russian). DOI: 10.35567/19994508-2025-1-57-75.
  31. Zharnikov Z.Yu., Dzyuba V.V., Myglan V.S., Vakhnina I.L. On the Issue of Dendrochronological Dating of Stone Structures Using the Example of the Trinity Cathedral in Kyakhta. Bylye Gody, 2022. No. 17 (4). P. 1721–1732 (in Russian).

For citation: Sodnomov B.V., Ayurzhanaev A.A., Chernykh V.N., Andreev S.G., Sat S.A., Garmaev E.Zh. Mapping of forests in icings zones of the Selenga River Basin. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 1. P. 341–354. DOI: 10.35595/2414-9179-2025-1-31-341-354 (in Russian)