View or download the article (Rus)
About the Authors
Sheyar Abdo
2, Universitetskaya str., Kaliningrad, 236041, Russia,
E-mail: abdosheyar@gmail.com
Yulia V. Koroleva
2, Universitetskaya str., Kaliningrad, 236041, Russia,
E-mail: yu.koroleff@yandex.ru
Abstract
This study investigates the potential sources of atmospheric particulate matter (PM10 and PM2.5) pollution at the Diabla Gora atmospheric background station, situated in the southeastern Baltic Region, from 2021 to 2023. The analysis employed backward air mass trajectory modeling using the HYSPLIT_4 system, cluster analysis, and the Concentration Weighted Trajectory (CWT) method. These integrated approaches enabled spatial characterization of potential pollution sources and identification of dominant air mass transport pathways responsible for aerosol influx to the monitoring site. Results revealed pronounced seasonal variability in PM concentrations, with peak levels during winter and spring months attributable to increased residential heating emissions and meteorological conditions unfavorable for pollutant dispersion. Air masses originating from Western Europe, Russia, Belarus, and the Baltic States accounted for the highest proportion of polluted trajectories, frequently associated with exceedances of daily air quality standards. Conversely, summer and autumn exhibited reduced PM concentrations due to diminished anthropogenic emissions and enhanced atmospheric dispersion, though eastern airflows-maintained influence. Autumn showed intensified contributions from northwestern and eastern pathways. Spatiotemporal distributions of PM source regions, identified through cluster analysis and CWT, demonstrated consistent seasonal patterns, confirming methodological robustness. These findings underscore the efficacy of integrated approaches for investigating transboundary atmospheric aerosol transport in the region.
Keywords
References
- Aliaga D., Sinclair V.A., Andrade M., Artaxo P., Carbone S., Kadantsev E., Bianchi F. Identifying Source Regions of Air Masses Sampled at the Tropical High-Altitude Site of Chacaltaya using WRF-FLEXPART and Cluster Analysis. Atmospheric Chemistry and Physics Discussions, 2021. V. 21. No. 21. P. 1–32. DOI: 10.5194/acp-21-16453-2021.
- Austin E., Coull B.A., Zanobetti A., Koutrakis P.A Framework to Spatially Cluster Air Pollution Monitoring Sites in US Based on the PM₂.₅ Composition. Environment International, 2013. V. 59. P. 244–254. DOI: 10.1016/j.envint.2013.06.003.
- Bari A., Dutkiewicz V.A., Judd C.D., Wilson L.R., Luttinger D., Husain L. Regional Sources of Particulate Sulfate, SO₂, PM₂.₅, HCl, and HNO₃ in New York, NY. Atmospheric Environment, 2003. V. 37. No. 20. P. 2837–2844. DOI: 10.1016/S1352-2310(03)00200-0.
- Brook R.D., Rajagopalan S., Pope C.A. III, Brook J.R., Bhatnagar A., Diez-Roux A.V., Holguin F., Hong Y., Luepker R.V., Mittleman M.A., Peters A., Siscovick D., Smith S.C. Jr., Whitsel L., Kaufman J.D. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation, 2010. V. 121. No. 21. P. 2331–2378. DOI: 10.1161/CIR.0b013e3181dbece1.
- Byčenkienė S., Dudoitis V., Ulevicius V. The Use of Trajectory Cluster Analysis to Evaluate the Long-Range Transport of Black Carbon Aerosol in the South-Eastern Baltic Region. Advances in Meteorology, 2014. Art. 137694. DOI: 10.1155/2014/137694.
- Davuliene L., Jasineviciene D., Garbariene I., Andriejauskiene J., Ulevicius V., Bycenkiene S. Long-Term Air Pollution Trend Analysis in the South-Eastern Baltic Region, 1981–2017. Atmospheric Research, 2021. V. 247. Art. 105191. DOI: 10.1016/j.atmosres.2020.105191.
- Draxler R.R., Hess G.D. Overview HYSPLIT4. Australian Meteorological Magazine, 1998. V. 47. P. 295–308.
- Hsu C.Y., Chiang H.C., Chen M.J., Yang T.T., Wu Y.S., Chen Y.C. Impacts of Hazardous Metals and PAHs in Fine and Coarse Particles with Long-Range Transports in Taipei City. Environmental Pollution, 2019. V. 250. P. 934–943. DOI: 10.1016/j.envpol.2019.04.038.
- Karl M., Jonson J.E., Uppstu A., Aulinger A., Prank M., Sofiev M., Jalkanen J.-P., Johansson L., Quante M., Matthias V. Effects of Ship Emissions on Air Quality in the Baltic Sea Region Simulated with Three Different Chemistry Transport Models. Atmospheric Chemistry and Physics, 2019. V. 19. No. 10. P. 7019–7053. DOI: 10.5194/acp-19-7019-2019.
- Lelieveld J., Klingmüller K., Pozzer A., Ramanathan V. Effects of Fossil Fuel and Total Anthropogenic Emission Removal on Public Health and Climate. Proceedings of the National Academy of Sciences, 2019. V. 116. No. 15. P. 7192–7197. DOI: 10.1073/pnas.1819989116.
- Li M., Huang X., Zhu L., Li J., Song Y., Cai X., Xie S. Analysis of the Transport Pathways and Potential Sources of PM₁₀ in Shanghai Based on Three Methods. Science of the Total Environment, 2012. V. 414. P. 525–534. DOI: 10.1016/j.scitotenv.2011.10.054.
- Miltenberger A.K., Roches A., Pfahl S., Wernli H. An Online Trajectory Module (version 1.0) for the Nonhydrostatic Numerical Weather Prediction Model COSMO. Geoscientific Model Development, 2013. V. 6. No. 6. P. 1989–2004. DOI: 10.5194/gmd-6-1989-2013. Web resource: https://www.cosmo-model.org/content/model/cosmo/development/COSMO_Doc_Trajectory_Module.pdf (accessed 3.03.2025).
- Pope C.A. III, Coleman N., Pond Z.A., Burnett R.T. Fine Particulate Air Pollution and Human Mortality: A Review of Epidemiological Evidence. Environmental Health Perspectives, 2020. V. 128. No. 4. Art. 047001. DOI: 10.1016/j.envres.2019.108924.
- Shukurov K.A., Shukurova L.M. Potential Sources of Southern Siberia Aerosols by Data of AERONET Site in Tomsk, Russia, Proceedings. SPIE 10466, 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2014. Art. 104663W. DOI: 10.1117/12.2287936.
- Skowrońska K., Chrzanowski W., Namięsnik J. Identification of Chemical Pollution Problems and Causes in the Baltic Sea in Relation to Socio-Economic Drivers. Polish Journal of Environmental Studies, 2009. V. 18. No. 4. P. 701–709.
- Stohl A. Computation, Accuracy and Applications of Trajectories—A Review and Bibliography. Atmospheric Environment, 1998. V. 32. No. 6. P. 947–966. DOI: 10.1016/S1352-2310(97)00457-3.
- Tørseth K., Aas W., Breivik K., Fjæraa A.M., Fiebig M., Hjellbrekke A.G., Lund Myhre C., Solberg S., Yttri K.E. Introduction to the European Monitoring and Evaluation Programme (EMEP) and Observed Atmospheric Composition Change during 1972–2009. Atmospheric Chemistry and Physics, 2012. V. 12. P. 5447–5481. DOI: 10.5194/acp-12-5447-2012.
- Wang Y. MeteoInfo: An Open-Source GIS, Scientific Computation and Visualization Platform. EGU General Assembly Conference Abstracts, 2022. EGU22-3492. DOI: 10.5194/egusphere-egu22-3492.
- Wang Y., Zhang X., Draxler R.R. TrajStat: GIS-Based Software that Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environmental Modelling & Software, 2009. V. 24. P. 938–939. DOI: 10.1016/j.envsoft.2009.01.004.
- Weerakkody Appuhamillage U. The Impact of Living Walls in the Reduction of Atmospheric Particulate Matter Pollution. PhD Thesis, Staffordshire University, Stoke-on-Trent, 2018. 209 p.
- Zhu L., Huang X., Shi H., Cai X., Song Y. Transport Pathways and Potential Sources of PM₁₀ in Beijing. Atmospheric Environment, 2011. V. 45. P. 594–604. DOI: 10.1016/j.atmosenv.2010.10.040.
For citation: Abdo Sh., Koroleva Yu.V. PM₁₀ and PM₂.₅ source regions in the southeastern Baltic based on data from the Diabla Góra background station. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 1. P. 233–248. DOI: 10.35595/2414-9179-2025-1-31-233-248 (in Russian)









