Influence of the urban environment on the formation of local climate zones and thermal anomalies

DOI: 10.35595/2414-9179-2024-2-30-543-555

View or download the article (Rus)

About the Authors

Anna A. Gosteva

Federal Research Center Krasnoyarsk Science Center,
50, Akademgorodok, Krasnoyarsk, 660036, Russia,
E-mail: AGosteva@icm.krasn.ru

Aleksandra K. Matuzko

Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences (ICM SB RAS),
50/44, Akademgorodok, Krasnoyarsk, 660036, Russia,
E-mail: akmatuzko@icm.krasn.ru

Abstract

The study of land surface temperature (LST) based on Landsat-8 and Landsat-9 satellite data for Krasnoyarsk for the period from 2013 to 2022 allowed the authors to identify thermal anomalies characteristic of the territory that occur within the boundaries of the urban heat island (UHI). There is also an archive of air temperature values based on the ground-based observation network of the Federal Research “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences” since 2020. When analyzing the urban area, it is more effective to consider these indicators together. When combining the contours of thermal anomalies by season, those were selected that have the greatest impact on the city and are considered by the authors to be all-season permanent thermal anomalies. Their seasonal dynamics are noted depending on the season (spring, summer or autumn), therefore, in the study area, the authors selected data for several different seasons from 2020 to 2022. The winter period is not considered due to the lack of surface temperature data due to the presence of snow cover. For a more detailed examination of the urban environment, this study examines the classification of local climatic zones (LCZ). A change in the contours of the LCZ was revealed when comparing the surface temperature maps of 2020 and 2022, and a change in the LCZ classes was observed due to active development in several directions (in the northwest, north and southeast) and the expansion of urban boundaries. An archive of air and surface temperature data was analyzed. The location of industrial facilities with contours of permanent thermal anomalies was considered, and the influence of the urban environment on their relative positions was assessed.

Keywords

LCZ, LST, Landsat, UHI, thermal anomalies, thermal space images

References

  1. Borzino N., Chng S., Mughal M.O., Schubert R. Willingness to Pay for Urban Heat Island Mitigation: A Case Study of Singapore. Climate, 2020. V. 8. Iss. 7. P. 82. DOI: 10.3390/cli8070082.
  2. Cheval S., Micu D., Dumitrescu A., Irimescu A., Frighenciu M., Iojă C., Tudose N.C., Davidescu Ș., Antonescu B. Meteorological and Ancillary Data Resources for Climate Research in Urban Areas. Climate, 2020. V. 8. Iss. 3. P. 37. DOI: 10.3390/cli8030037.
  3. Choate M.J., Rengarajan R., Storey J.C., Lubke M. Landsat-9 Geometric Characteristics Using Underfly Data. Remote Sensing, 2022. V. 14. Iss. 15. P. 3781. DOI: 10.3390/rs14153781.
  4. Gosteva A.A., Matuzko A.K., Yakubailik O.E. Algorithm for calculating surface temperature to recover lost Landsat-8–9 Collection 2 Level 2 data. InterCarto. InterGIS, 2023. V. 29. No. 1. P. 318–329 (in Russian). DOI: 10.35595/2414-9179-2023-1-29-318-329.
  5. Liu L., Zhang Y. Urban heat island analysis using the Landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sensing, 2011. V. 3. P. 1535–1552.
  6. Malakar N.K., Hulley G.C., Hook S.J., Laraby K., Cook M., Schott J.R. An operational land surface temperature product for Landsat thermal data: Methodology and validation. IEEE Transactions on Geoscience and Remote Sensing, 2018. V. 56. P. 5717–5735.
  7. Matuzko A.K., Yakubailik O.E. Urban heat island effects over Krasnoyarsk obtained on the basis of Landsat-8 remote sensing data. IOP Conference Series: Earth and Environmental Sciences, 2018. V. 211. P. 012010. DOI: 10.1088/1755-1315/211/1/012010.
  8. Oke T.R., Mills G., Voogt J.A. Urban Climates. Cambridge, UK: Cambridge University Press, 2017. 525 p.
  9. Samsonov T.E., Trigub K.S. Mapping of local climatic zones of Moscow city from satellite images. Geodesy and Cartography, 2018. V. 79. No. 6. P. 14–25 (in Russian). DOI: 10.22389/0016-7126-2018-936-6-14-25.
  10. Yakubailik O., Zavorue V., Malimonov M.I., Pushkarev A. Spatial Analysis of Air Pollution in Krasnoyarsk. CEUR Workshop Proceedings, 2020. V. 2534. P. 84.
  11. Zhou D., Xiao J., Bonafoni S., Berger C., Deilami K., Zhou Y., Frolking S., Yao R., Qiao Z., Sobrino J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges and perspectives. Remote Sensing, 2019. V. 11. Iss. 1. P. 48. DOI: 10.3390/rs11010048.

For citation: Gosteva A.A., Matuzko A.K. Influence of the urban environment on the formation of local climate zones and thermal anomalies. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 543–555. DOI: 10.35595/2414-9179-2024-2-30-543-555 (in Russian)