The relationship between seasonal changes in light pollution and the vegetation index on the example of the city of St. Petersburg

DOI: 10.35595/2414-9179-2024-2-30-482-497

View or download the article (Rus)

About the Authors

Mikhail B. Kagan

St. Petersburg State University, Institute of Earth Sciences,
7-9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: kagan.mikko@gmail.com

Natalia A. Pozdnyakova

St. Petersburg State University, Institute of Earth Sciences,
7-9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: n.pozdnyakova@spbu.ru

Tatyana A. Andreeva

St. Petersburg State University, Institute of Earth Sciences,
7-9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: t.andreeva@spbu.ru

Dmitriy S. Tasenko

North Caucasus Federal University, Higher School of Geography and Geoinformatics,
1, Pushkina str., Stavropol, 355017, Russia,
E-mail: dimitri.tasenko@yandex.ru

Evgeniya A. Skripchinskaya

North Caucasus Federal University, Higher School of Geography and Geoinformatics,
1, Pushkina str., Stavropol, 355017, Russia,
E-mail: gerdtea@yandex.ru

Arina I. Rakova

St. Petersburg State University, Institute of Earth Sciences,
7-9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: rakova.arina@gmail.com

Abstract

While the cities become bigger, the reduction of green areas and, in turn, the growth of light pollution in urban areas increases. The world community is concerned about the impact of superfluous artificial lighting on the health of urban people, plants and animals. However, methods for minimizing this effect have not yet been determined. Modern remote sensing data makes it possible to provide the research that was previously poorly studied or with various indicators. The paper presents the results of a study of the Pearson correlation coefficient of two indicators: the vegetation index and light pollution by season for the city of St. Petersburg. The study used data from Landsat-8 and NOAA satellites. Results of the analysis are provided with schemas, diagrams, graphs and tables. In the result of the study, the correlation between the vegetation index and light pollution during the period of absence of stable snow cover in the city was identified. The linear relationship is inverse, which means that while the one variable increases, another one decreases. Supporting reliability of the study, seven green areas were chosen in different parts of the city: Tavrichesky Garden, Sosnovka and Moskovsky Victory Parks, Novoorlovsky, Yuntolovsky and South Coast of the Neva Bay protected areas and Smolensky Cemetery. These territories are touristic, illuminated and have a large green area. During the period of active growth of phytocenoses, an increase in plant biomass is observed, and therefore light pollution decreases. At the end of the growing season, there is an increase in light pollution, which is confirmed by the conducted research.

Keywords

Earth remote sensing, vegetation index, light pollution, seasonality, Pearson correlation coefficient

References

  1. Aubrecht C., Leon J. Evaluating Multi-Sensor Nighttime Earth Observation Data for Identification of Mixed vs. Residential Use in Urban Areas. Remote Sensing, 2016. V. 8. DOI: 10.3390/rs8020114.
  2. Golubets D.I., Ermolaeva Ya.K., Karnaukhov D.Yu., Zilov E.A. The use of remote sensing of the Earth in the study of light pollution of aquatic ecosystems on the example of the village of Listvyanka. Biodiversity, state and dynamics of natural and anthropogenic ecosystems in Russia: Proceedings of the All-Russian Scientific and Practical Conference, 2021. P. 120–124 (in Russian).
  3. Górniak-Zimroz J., Romańczukiewicz K., Magdalena Sitarska M., Aleksandra Szrek A. Light-pollution-monitoring method for selected environmental and social elements. Remote Sensing, 2024. P. 1–22. DOI: 10.3390/rs16050774.
  4. Guha S., Govil H. Land surface temperature and normalized difference vegetation index relationship: a seasonal study on a tropical city. Springer Nature, 2020. P. 1–14. DOI: 10.1007/s42452-020-03458-8.
  5. Hirt M.R., Evans D.M., Miller C.R., Ryser R. Light pollution in complex ecological systems. The Royal Society Publishing, 2023. V. 378. Iss. 1892. DOI: 10.1098/rstb.2022.0351.
  6. Kagan M.B., Tasenko D.S. Assessment of the dynamics of light pollution in the resort towns of the Caucasian mineral waters (2012–2022) using remote sensing data. GIS technologies in Earth sciences: Proceedings of the Republic Scientific and Practical Seminar of Students and Young Scientists, 2023. P. 170–177 (in Russian). Web resource: https://elib.bsu.by/handle/123456789/308736 (accessed 28.08.2024).
  7. Kortov E.E. Environmental pollution and its determination using remote sensing data. Problems of nature management and the ecological situation in European Russia and adjacent territories: Proceedings of the VIII International Scientific Conference, 2019. P. 350–357 (in Russian).
  8. Malik M.S., Shukla J.P., Mishra S.N. Relationship of LST, NDBI and NDVI using Landsat-8 data in Kandaihimmat watershed, Hoshangabad, India. Indian Journal of Geo-Marine Sciences, 2019. V. 48. Iss. 1. P. 25–31.
  9. McGowan T. Light pollution. Encyclopedia of Color Science and Technology, 2016. P. 837–842. DOI: 10.1007/978-1-4419-8071-7_133.
  10. Nurbandi W., Yusuf F.R., Prasetya R., Afrizal M.D. Using Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery to identify and analyze light pollution. IOP Conference Series: Earth and Environmental Science, 2016. V. 47. P. 1–11. DOI: 10.1088/1755-1315/47/1/012040.
  11. Schroer S., Hölker F. Light pollution reduction: methods to reduce the environmental impact of artificial light at night. Handbook of Advanced Lighting Technology, 2017. P. 991–1010. DOI: 10.1007/978-3-319-00176-0_43.
  12. Shovengerdt R.A. Remote sensing. Models and methods of image processing. Moscow: Technosphera, 2010. P. 560 (in Russian).
  13. Skripchinskaya E.A., Romanenko K.I. Dynamics of light pollution in the Stavropol Territory (2012–2020). UEPS: Management, Economics, Politics, Sociology, 2021. No. 3. P. 98–105 (in Russian). DOI: 10.24412/2412-2025-2021-3-98-105.
  14. Volichenko O.V., Tsurik T.O. “Smart landscape” of City Park. Academia. Architecture and Construction, 2023. No. 4. P. 118–126 (in Russian). DOI: 10.22337/2077-9038-2023-4-118-126.
  15. Zhukovskaya M.I., Severina I.Yu., Novikova E.S. Light anthropogenic pollution: effect on insects. Biosfera, 2022. V. 14. No. 2. P. 126–136 (in Russian).

For citation: Kagan M.B., Pozdnyakova N.A., Andreeva T.A., Tasenko D.S., Skripchinskaya E.A., Rakova A.I. The relationship between seasonal changes in light pollution and the vegetation index on the example of the city of St. Petersburg. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 482–497. DOI: 10.35595/2414-9179-2024-2-30-482-497 (in Russian)