Spectral indicators of the post-pyrogenic state of steppe areas (using the example of a key territory in the Southern Trans-Urals)

DOI: 10.35595/2414-9179-2024-2-30-282-298

View or download the article (Rus)

About the Authors

Vladimir M. Pavleichik

Institute of Steppe of the Ural Branch of the Russian Academy of Sciences,
11, Pionerskaya str., Orenburg, 460000, Russia,
E-mail: vmpavleychik@gmail.com

Roman V. Ryahov

Institute of Steppe of the Ural Branch of the Russian Academy of Sciences,
11, Pionerskaya str., Orenburg, 460000, Russia,
E-mail: remus.rv@gmail.com

Abstract

Pyrogenic effects are one of the most significant environmental and landscape-forming factors in the steppe regions of Northern Eurasia, and therefore the issues of assessing the nature and duration of restoration processes remain more than relevant. The objectives of the study were to identify regional features of the use of spectral indices in assessing the dynamics of postpyrogenic recovery processes. The key territory is located in the Southern Trans-Urals within the Orenburg Region and covers an area of 657 km2. In August 2017, part of it was exposed to fire. The initial materials were multispectral images of Landsat-8, the collection of zonal statistics was carried out on 26 sites with an area of 1 km2 each, linearly grouped into 6 conditional profiles. Taking into account the idea of the duration of post-pyrogenic recovery processes, the time series of images covers the growing season from 2016 to 2019. Widely used spectral indices were used for the analysis: NDVI, BAI, MIRBI, NBR, NBR2, NBRT1, NBRT3, SWVI and surface temperature. Based on the generated database, the values were calculated for individual profiles and for all sites in general, divided into burnt and unburnt territories. The actual (average, maximum and minimum) values and deviations from the benchmarks were calculated, tables of correlation dependencies between the values of spectral indices were prepared. All the considered spectral indices with varying degrees of contrast recorded the features of the burnt surface until the end of the growing season in 2017. MIRBI, NBR2 and surface temperature indicators showed the longest duration of preservation of differences between burning and natural vegetation without significant loss of contour boundaries (until the end of 2019). Some spectral indices (NDVI, NBR, NBRT1, BAI and, especially, SWVI) retained the outlines of the burning contour for a long time, but radically changed the nature of the relationship with the background at various times of the recovery period. This was facilitated by the active growth of green phytomass on the burns and the masking effect of dry phytomass on the control sites. The duration of the preservation of differences between burns and control areas according to remote sensing data is about two years (growing season). Approximately at the same time, the resumption of the ability to spread fire sustainably is estimated.

Keywords

steppe fires, satellite images, spectral indexes, restoration

References

  1. Dewald J., Southworth J., Moise I. The role of people, parks and precipitation on the frequency and timing of fires in a sub-Saharan savanna ecosystem. International Journal of Wildland Fire, 2023. V. 33. DOI: 10.1071/WF23020.
  2. Gao B. NDWI—A normalized difference water index for remote sensing of vegetation liquid from space. Remote Sensing of Environment, 1996. V. 58. P. 257–266.
  3. Hardtke L.A., Blanco P.D., Del Valle H.F., Metternicht G.I., Sione W.F. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery. International Journal of Applied Earth Observation and Geoinformation, 2015. V. 38. P. 25–35. DOI: 10.1016/j.jag.2014.11.011.
  4. Holden A., Smith S., Morgan P., Rollins G., Gessler E. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. International Journal of Remote Sensing, 2005. V. 26. No. 21. P. 4801–4808.
  5. Holden Z., Swanson A., Luce C., Matt Jolly W., Maneta M., Oyler J., Warren D., Parsons R., Affleck D. Decreasing fire season precipitation increased recent western US forest wildfire activity. PNAS, 2018. V. 115. No. 36. P. E8349.
  6. Key C., Benson N. Measuring and remote sensing of burn severity. USA, Idaho: Proceedings Joint Fire Science Conference and Workshop, 1999. V. II.
  7. Key C.H., Benson N.C. Landscape assessment (LA) sampling and analysis methods. Gen. Tech. Rep. RMRS-GTR-164. USA, Ogden (Utah): USDA Forest Service, Rocky Mountain Research Station, 2006.
  8. Lozano F.J., Suarez-Seoane S., De Luis E. Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modelling. Remote Sensing of Environment, 2007. V. 107. No. 4. P. 533–544. DOI: 10.1016/j.rse.2006.10.001.
  9. Martin M.P., Chuvieco E. Cartografía de grandes incendios forestales en la península iberica a partir de imagenes NOAA-AVHRR. Mapping of large forest fires in the Iberian Peninsula from NOAA-AVHRR images. Serie: Geografica, 1998. V. 7. P. 109–128.
  10. Mayr M., Vanselow K., Samimi C. Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecological Indicators, 2018. V. 91. DOI: 10.1016/j.ecolind.2018.04.022.
  11. Medvedeva M.A., Makarov D.A., Sirin A.A. Applicability of various spectral indices based on satellite data for estimating peat fire areas. Current Problems in Remote Sensing of the Earth from Space, 2020. V. 17. No. 5. P. 157–166 (in Russian). DOI: 10.21046/2070-7401-2020-17-5-157-166.
  12. Mishra N., Mainali K., Crews K. Modeling spatio-temporal variability in fires in semi-arid savannas: A satellite-based assessment around Africa’s largest protected area. International Journal of Wildland Fire, 2016. V. 25. DOI: 10.1071/WF15152.
  13. Myachina K.V., Pavleychik V.M., Chibilev A.A. Problems and possibilities of geoinformation methods in identifying steppe harems. Regional Environmental Issues, 2016. No. 6. P. 159–166. (in Russian).
  14. Nizamani M., Zhang Q., Muhae-Ud-Din G., Awais M., Qayyum M., Farhan M., Jabran M., Wang Y. Application of GIS and remote-sensing technology in ecosystem services and biodiversity conservation, 2023. P. 38. DOI: 10.1201/9781032646268-12.
  15. Pandit K., Dashti H., Hudak A., Glenn N., Flores A., Shinneman D. Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model. Biogeosciences, 2021. V. 18. P. 2027–2045. DOI: 10.5194/bg-18-2027-2021.
  16. Parker B.M., Lewis T., Srivastava S.K. Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote Sensing of Environment, 2015. V. 170. P. 340–349.
  17. Pavleychik V.M., Kalmykova O.G., Soroka O.V. Features of the thermal regime and humidification conditions of post-pyrogenic steppe landscapes. Izvestia RAN. Seriya Geograficheskaya (News of the Academy of Sciences of USSR. Geographical series), 2020. V. 84. No. 4. P. 541–550 (in Russian). DOI: 10.31857/S2587556620040111.
  18. Pavleychik V.M., Myachina K.V. Features of the thermal regime of the Earth’s surface after steppe fires according to Landsat satellites. Vestnik (Herald) of the Orenburg State University, 2016. No. 4 (192). P. 83–89 (in Russian).
  19. Perez C.C., Olthoff A.E., Hernandez-Trejo H., Rullan-Silva C.D. Evaluating the best spectral indices for burned areas in the tropical Pantanos de Centla Biosphere Reserve, Southeastern Mexico. Remote Sensing Applications: Society and Environment, 2022. V. 25. P. 100664. DOI: 10.1016/j.rsase.2021.100664.
  20. Rasul A., Faqe I., Hameed H., Tansey K. A trend of increasing burned areas in Iraq from 2001 to 2019. Environment Development and Sustainability, 2021. P. 1–19. DOI: 10.1007/s10668-020-00842-7.
  21. Röder A., Hill J., Duguy B., Alloza J.A., Vallejo R. Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora Region (eastern Spain). Remote Sensing of Environment, 2008. V. 112. No. 1. P. 259–273.
  22. Shinkarenko S.S. Changes in spectral-reflective characteristics of zonal landscapes of the Northern Caspian Sea under pyrogenic effects. Current Problems in Remote Sensing of the Earth from Space, 2021. V. 18. No. 3. P. 192–206 (in Russian). DOI: 10.21046/2070-7401-2021-18-3-192-206.
  23. Sukhinin A.I., French N., Kasischke E., Hewson J., Soja A.J., Csiszar I.A., Hyer E.J., Loboda T., Conrad S.G., Romasko V.I., Pavlichenko E.A., Miskiv S.I., Slinkina O.A. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sensing of Environment, 2004. V. 93. Iss. 4. P. 546–564. DOI: 10.1016/j.rse.2004.08.011.
  24. Trigg S., Flasse S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. International Journal of Remote Sensing, 2001. V. 22. P. 2641–2647.
  25. Tucker C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 1979. V. 8. P. 127–150.
  26. Ukrainsky P.A. Dynamics of spectral properties of overgrown herbaceous harems. Current Problems in Remote Sensing of the Earth from Space, 2013. V. 10. No. 4. P. 229–238 (in Russian).
  27. Weber K.T., Seefeldt S.S., Norton J.M., Finley C. Fire severity modeling of sagebrush-steppe rangelands in Southeastern Idaho. GIScience & Remote Sensing, 2008. V. 45. No. 1. P. 68–82.

For citation: Pavleichik V.M., Ryahov R.V. Spectral indicators of the post-pyrogenic state of steppe areas (using the example of a key territory in the Southern Trans-Urals). InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 282–298. DOI: 10.35595/2414-9179-2024-2-30-282-298 (in Russian)