Monitoring of agricultural land in the Aral Sea region using remote sensing data of the Earth

DOI: 10.35595/2414-9179-2024-2-30-171-180

View or download the article (Eng)

About the Authors

Sabine A. Akzhigit

D. Serikbayev East Kazakhstan Technical University, School of Earth Sciences,
19, Serikbayeva str., Ust-Kamenogorsk, Republic of Kazakhstan, 070004,
E-mail: esimkanova8@gmail.com

Marzhan M. Toguzova

D. Serikbayev East Kazakhstan Technical University, School of Earth Sciences,
19, Serikbayeva str., Ust-Kamenogorsk, Republic of Kazakhstan, 070004,
E-mail: marzhan123@mail.ru

Almagul K. Abdygalieva

D. Serikbayev East Kazakhstan Technical University, School of Earth Sciences,
19, Serikbayeva str., Ust-Kamenogorsk, Republic of Kazakhstan, 070004,
E-mail: alma-abdygalieva@mail.ru

Zhanat Kanatuly

D. Serikbayev East Kazakhstan Technical University, School of Earth Sciences,
19, Serikbayeva str., Ust-Kamenogorsk, Republic of Kazakhstan, 070004,
E-mail: zhanat-12345@mail.ru

Dauren Zh. Kulenov

D. Serikbayev East Kazakhstan Technical University, School of Earth Sciences,
19, Serikbayeva str., Ust-Kamenogorsk, Republic of Kazakhstan, 070004,
E-mail: dauren.kulenov@yandex.ru

Abstract

The article researches the use of satellite monitoring to analyze changes in vegetation and soil cover of agricultural land in the Aral Sea Region, located in Kyzylorda Region, on the border of Kazakhstan and Uzbekistan, using geographic information systems (GIS). These technologies are widely used to monitor natural disasters, agriculture, forest and water resources and analyze environmental pollution and predict its effects. The purpose of the study is to assess and analyze the impact of environmental degradation on agricultural land using Earth remote sensing data. The methodology includes analyzing time series of space images to calculate vegetation indices, which makes it possible to identify the dynamics of changes and assess the level of land degradation. Landsat-8 space images data for different time intervals from 2014 to 2023 were used. The object of the study was agricultural plots in Kazaly district, located on the territory of the Aral Sea. Analysis and assessment of changes in the study area were carried out using Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Normalized Salinity Index (NDSI) on Landsat satellite images. Data processing was performed in the EOSDA Land Viewer and QGIS software environment. As a result of satellite data processing, maps of the dynamics of agricultural crop development using NDVI, maps of water availability in the study area using NDWI, and maps assessing the degree of salinization of the soil cover were obtained. The obtained results allow us to understand more deeply the scale of the Aral Sea ecological problem and contribute to the development of actual effective strategies of adaptation and restoration of the affected agroecosystems.

Keywords

satellite monitoring, space images, environmental problems, remote sensing of the earth, Aral Sea

References

  1. Albarakat R., Lakshmi V. Monitoring Dust Storms in Iraq Using Satellite. Sensors, 2019. No. 19. P. 3687. DOI: 10.3390/s19173687.
  2. Apshikur B., Kurmangaliyev T.B., Goltsev A.G., Alimkulov M.M., Kapasov A.K. The method of multi-criteria analysis for determining the flood-hazardous area and the development of protective structures. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023. P. 9–17. DOI: 10.5194/isprs-archives-xlviii-5-w2-2023-9-2023.
  3. Asfaw E., Suryabhagavan K.V., Argaw M. Soil salinity modeling and Mapping Using Remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 2018. V. 17. Iss. 3. P. 250–258. DOI: 10.1016/j.jssas.2016.05.003.
  4. Dubovyk O. The role of Remote Sensing in land degradation assessments: opportunities and challenges. European Journal of Remote Sensing, 2017. No. 50 (1). P. 601–613. DOI: 10.1080/22797254.2017.1378926.
  5. Franklin S., Lavigne M., Wulder M., Stenhouse G. Change detection and landscape structure mapping using remote sensing. The Forestry Chronicle, 2023. No. 78. P. 618–625. DOI: 10.5558/tfc78618-5.
  6. Ginzburg A., Kostyanoy A., Sheremet N., Kravtsova V. Satellite monitoring of the Aral Sea Region. Problems of Ecological Monitoring and Ecosystem Modeling, 2010. V. 23. P. 150–193.
  7. Jurado J., López A., Pádua L, Sousa J. Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry. International Journal of Applied Earth Observation and Geoinformation, 2022. V. 112. DOI: 10.1016/j.jag.2022.102856.
  8. Khorshiddoust A.M., Patel N., Khalilzadeh E. A comparative study of the surface level changes of Urmia Lake and Aral Lake during the period of 1988 to 2018 using satellite images. Frontiers of Earth Science, 2022. DOI: 10.1007/s11707-022-1010-5.
  9. Kim J., Lee S., Song C., Jo H.-W. Identifying potential vegetation establishment areas in the Aral Sea using satellite images. Land Degradation and Development, 2020. No. 31 (1). DOI: 10.1002/ldr.3642.
  10. Kravtsova V.I. The possibilities of comparing for multitemporal imagery of various resolution under the northern river deltas dynamics investigation. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 1. P. 277–291 (in Russian). DOI: 10.35595/2414-9179-2021-1-27-277-291.
  11. Kulenova N., Toguzova M., Assylkhanova Z., Mamysheva A., Sadenova M., Rakhymberdina M. Development of three-dimensional models of the spread of pollution on agricultural land in industrial cities. AIP Conference proceedings, 2022. V. 2570. P. 040014. DOI: 10.1063/5.0100029.
  12. Kumsa A., Assen M. GIS and remote sensing based land degradation assessment and mapping: Case study Adea Woreda. Research Square, 2022. DOI: 10.21203/rs.3.rs-1876897/v1.
  13. Kurganovich K.A., Kochev D.V., Bosov M.A. The hybrid method of water levels and volumes reconstructing in the Arakhley lake (Trans-Baikal territory) according to Landsat remote sensing data with unmanned aerial vehicles images fusion. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International Conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 368–382 (in Russian). DOI: 10.35595/2414-9179-2022-1-28-368-382.
  14. Petrov G. Modern problems of integrated use of water and energy resources of the Aral Sea basin. Water Resources, Energetics and Ecology, 2021. V. 1. No. 1. P. 20–34.
  15. Polyakova A., Mukharamova S., Yermolaev O., Shaykhutdinova G. Automated recognition of tree species composition of forest communities using Sentinel-2 Satellite Data. Remote Sensing, 2023. No. 15. P. 329–349. DOI: 10.3390/rs15020329.
  16. Radočaj D., Obhođaš J., Jurišić M., Gašparović M. Global open data remote sensing satellite missions for land monitoring and conservation: A Review. Land, 2020. No. 9. Iss. 11. P. 402. DOI: 10.3390/land9110402.
  17. Rakhymberdina M., Grokhotov E., Assylkhanova Z., Toguzova M. Using space survey materials for modeling hydrodynamic accidents at mining enterprises in Kazakhstan. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022. DOI: 10.5194/isprs-archives-XLVI-5-W1-2022-193-2022.
  18. Rakhymberdina M., Kulenova N., Shaimardanov Zh., Assylkhanova Z., Toguzova M., Kassymov D. Using remote sensing data to support intelligent agricultural GIS to monitor the condition of arable land and crops. Chemical Engineering Transactions, 2022. V. 94. P. 838–888. DOI: 10.3303/cet2294147.
  19. Reddy G.P. Kumar N., Singh S.K. Remote Sensing and GIS in mapping and monitoring of land degradation. Geotechnologies and the Environment, 2018. V. 21. P. 401–424.
  20. Semeniaka V., Zatserkovnyi V., Shovkoplias T., Polyakova N., Martyniuk L. Remote Sensing of the Earth and GIS technology in monitoring surface water pollution using the example of the Kremenchug Reservoir. International Conference of Young Professionals “GeoTerrace-2022”, 2022. DOI: 10.3997/2214-4609.2022590069.
  21. Shevyrev S.L., Antsiferova G.A., Rusova N.I., Khamzikeeva M.J. Analysis of satellite images as a method of controlling natural and anthropogenic processes using the example of the middle Crow current (Tambov Region). Bulletin of the VSU, 2013. No. 1. P. 35–39 (in Russian).
  22. Shoshany M., Goldshleger N., Chudnovsky A. Monitoring of agricultural soil degradation by remote-sensing methods: a review. International Journal of Remote Sensing, 2013. No. 34. Iss. 17. P. 6152–6181. DOI: 10.1080/01431161.2013.793872.
  23. Teslenok S., Kalashnikova L., Mushtaikin A. Preparation of materials for geographic information and cartographic monitoring of the Aral Sea shoreline based on remote sensing data. DSPU Journal, 2023. V. 17. No. 3. P. 88–105 (in Russian). DOI: 10.31161/1995-0675-2023-17-3-88-105.
  24. Toguzova M., Rakhymberdina M., Kulenova N., Shaimardanov Zh., Assylkhanova Z., Apshikur B., Beisekenov N. Analysis of process modeling in modern software program to support “Smart” agriculture. Chemical Engineering Transactions, 2022. V. 97. P. 19–24. DOI: 10.3303/CET2294145.
  25. Toguzova M., Rakhymberdina M., Nurshaiykova G., Gusarenko Y. Development of third-dimensional model of Ust-Kamenogorsk city for environmental monitoring purposes. AIP Conference Proceedings. SGEM, 2016. V. 2570. P. 239–246. DOI: 10.1063/5.0100029.
  26. Wang J., Zhen J., Hu W., Chen S., Lizaga I., Zeraatpisheh M., Yang X. Remote sensing of soil degradation: progress and perspective. International Soil and Water Conservation Research, 2023. V. 11. P. 429–454. DOI: 10.1016/j.iswcr.2023.03.002.

For citation: Akzhigit S.A., Toguzova M.M., Abdygalieva A.K., Kanatuly Z., Kulenov D.Zh. Monitoring of agricultural land in the Aral Sea region using remote sensing data of the Earth. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 171–180. DOI: 10.35595/2414-9179-2024-2-30-171-180