Integral assessment of social determinants of public health of the Kaliningrad Region population in the context of the COVID-19 pandemic (municipal level)

DOI: 10.35595/2414-9179-2023-2-29-162-179

View or download the article (Rus)

About the Authors

Aleksandr N. Ogurtsov

Saint Petersburg State University, Institute of Earth Sciences,
33–35, 10th line of Vasilievsky Island, St. Petersburg, 199178, Russia,
E-mail: aogurcov@yandex.ru

Vasiliy V. Dmitriev

Saint Petersburg State University, Institute of Earth Sciences,
33–35, 10th line of Vasilievsky Island, St. Petersburg, 199178, Russia,
E-mail: v.dmitriev@spbu.ru

Abstract

Assessment of the impact of coronavirus infection (COVID-19) on the world community, its spread in different countries and regions is far from complete, which is confirmed by the scale of the study of the causes and factors of morbidity in different countries. The article is devoted to the issues of integral assessment and analysis of spatial features of inequality of social determinants of public health. The aim of the study was to identify the influence of social conditions on the spatial features of the spread of the coronavirus pandemic on the basis of an integral assessment of the impact on the incidence of social factors on the example of municipalities of the Kaliningrad Region. The authors collected data on individual municipalities on the incidence of COVID-19 and social factors for 2021. The list of social factors included: 1—the level of registered unemployment; 2—coverage of children with preschool education from the number of children of the appropriate age; 3—the number of conditional (minimum) set of food; 4—the proportion of families in need of improved housing conditions; 5—the proportion of citizens in the total population who enjoy social support for housing and communal services; 6—the number of registered crimes per 1 000 people; 7—openness and accessibility of information on the provision of medical services in outpatient settings; 8—the comfort of the conditions for providing medical services and the availability of receiving them on an outpatient basis. As an integral criterion for assessing the impact of social determinants on morbidity, a composite indicator characterizing the level of morbidity of the population (CI) is considered. Modeling of additive convolution of criteria based on the principles of ASPID methodology is used as the main method. This makes it possible to take into account non-numerical, inaccurate and incomplete information about criteria and their priority in evaluation studies. Cartographic models based on geographic information systems (GIS) are used to perform spatial analysis, visualize the level of morbidity and assess the impact of social determinants on morbidity. The study revealed spatial trends in the development of COVID-19 in the region and noted an increase in the incidence of the population. For most municipalities, the incidence rates exceed 60 cases per 1 000 people. Against the background of an increase in the level of morbidity, a feature of its spatial distribution was the leveling of the nature of morbidity within the region, accompanied by smoothing in the space of social inequalities. The analysis and assessment of the influence of various social factors on the spatial variability of coronavirus infection confirmed the conclusions previously made by the authors that the weight of the social determinants affecting COVID-19 changes over time and in space. The main factors contributing to inequality in public health in 2021, along with housing conditions, were the state of crime and employment of the population. The results of the correlation analysis confirm the presence of a negative correlation between the composite indicator (KP) and the incidence of COVID-19. In general, in 2021, the correlation relationships previously identified remain moderate in strength (0.30 < p < 0.49). As the results of the study have shown, the use of the ASPID method can provide important information to public authorities at all levels for decision-making and the development of necessary measures in emergency situations of an epidemic nature and health management in the regions.

Keywords

social determinants, composite indicator, COVID-19, ASPID, GIS

References

  1. Abrams E.M., Szefler S.J. COVID-19 and the impact of social determinants of health. The Lancet Respiratory Medicine, 2020. V. 8. Iss. 7. P. 659–661. DOI: 10.1016/S2213-2600(20)30234-4.
  2. Alidadi M., Sharifi A. Effects of the built environment and human factors on the spread of COVID-19: A systematic literature review. Science of The Total Environment, 2022. V. 850. DOI: 10.1016/j.scitotenv.2022.158056.
  3. Bayode T., Popoola A., Akogun O., Siegmund A., Magidimisha-Chipungu H., Ipingbemi O. Spatial variability of COVID-19 and its risk factors in Nigeria: A spatial regression method. Applied Geography, 2022. V. 138. DOI: 10.1016/j.apgeog.2021.102621.
  4. Bontempi E., Vergalli S., Squazzoni F. Understanding COVID-19 diffusion requires an interdisciplinary, multi-dimensional approach. Environmental Research, 2020. V. 188. DOI: 10.1016/j.envres.2020.109814.
  5. Coccia M. The impact of first and second wave of the COVID-19 pandemic in society: Comparative analysis to support control measures to cope with negative effects of future infectious diseases. Environmental Research, 2021. V. 197. DOI: 10.1016/j.envres.2021.111099.
  6. Coker ES., Molitor J., Liverani S., Martin J., Maranzano P., Pontarollo N., Vergalli S. Bayesian profile regression to study the ecologic associations of correlated environmental exposures with excess mortality risk during the first year of the COVID-19 epidemic in lombardy, Italy. Environmental Research, 2023. V. 216. Part 1. DOI: 10.1016/j.envres.20 22.114484.
  7. Drapkina O.M., Samorodskaya I.V., Sivtseva M.G., Kakorina E.P., Briko N.I., Cherkasov S.N., Zinserling V.A., Malkov P.G. COVID-19: Urgent questions for estimating morbidity, prevalence, case fatality rate and mortality rate. Cardiovascular Therapy and Prevention, 2020. V. 19. No. 3. P. 302–309 (in Russian). DOI: 10.15829/1728-8800-2020-2585.
  8. Dutta I., Basu T., Das A. Spatial analysis of COVID-19 incidence and its determinants using spatial modeling: A study on India. Environmental Challenges, 2021. V. 4. DOI: 10. 1016/j.envc.2021.100096.
  9. Ehlert A. The socio-economic determinants of COVID-19: A spatial analysis of German county level data. Socio-Economic Planning Sciences, 2021. V. 78. DOI: 10.1016/j.seps.2021.101083.
  10. Figueira J.R., Oliveira H.M., Serro A.P., Colaço R., Froes F., Cordeiro C.R., Diniz A., Guimarães M. A multiple criteria approach for building a pandemic impact assessment composite indicator: The case of COVID-19 in Portugal. European Journal of Operational Research, 2023. V. 309. Iss. 2. P. 795–818. DOI: 10.1016/j.ejor.2023.01.025.
  11. Khovanov N.V. Analysis and synthesis of indicators at information deficiency. St. Petersburg: St. Petersburg State University Press, 1996. 196 p. (in Russian).
  12. Kashem S.B., Baker D.M., González S.R., Lee C.A. Exploring the nexus between social vulnerability, built environment, and the prevalence of COVID-19: A case study of Chicago. Sustainable Cities and Society, 2021. V. 75. DOI: 10.1016/j.scs.2021.103261.
  13. Kianfar N., Mesgari M-S., Mollalo A., Kaveh M. Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms. Spatial and Spatio-temporal Epidemiology, 2022. V. 40. DOI: 10.1016/j.sste.2021.100471.
  14. Mansour S., Al Kindi A., Al-Said A., Al-Said A., Atkinson P. Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustainable Cities and Society, 2021. V. 65. DOI: 10.1016/j.scs.2020.102627.
  15. Mishra Sh., Ma H., Moloney G., Yiu Kristy C.Y., Darvin D., Landsman D., Kwong Je.C., Calzavara A., Straus Sh., Chan A.K., Gournis Ef., Rilkoff H., Xia Y., Katz A., Williamson T., Malikov K., Kustra R., Maheu-Giroux M., Sander B., Baral St.D. Increasing concentration of COVID-19 by socioeconomic determinants and geography in Toronto, Canada: An observational study. Annals of Epidemiology, 2022. V. 65. P. 84–92. DOI: 10.1016/j.annepidem.2021.07.007.
  16. Ogurtsov A.N., Dmitriev V.V. Integrated assessment of social determinants of public health of the population of the Kaliningrad Region (municipal level) InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 3. P. 78–90 (in Russian). DOI: 10.35595/2414-9179-2020-3-26-78-90.
  17. Ogurtsov A.N., Dmitriev V.V. The social determinants of public health during the COVID-19 pandemic: an integrated assessment of Kaliningrad region data (municipal level) InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 311–320 (in Russian). DOI: 10.35595/2414-9179-2022-2-28-311-320.
  18. Panin A.N., Rylskiy I.A., Tikunov V.S. Spatial patterns of COVID-19 distribution in Russia and the world: Cartographic analysis. Moscow University Bulletin. Series 5. Geography, 2021. No. 1. P. 62–77 (in Russian).
  19. Sizikova T.E., Lebedev V.N., Borisevich S.V. Environmental, biological and social factors contributing to new rises in COVID-19 morbidity in Russia. BIOpreparaty. Profilaktika, diagnostika, lechenie (Biological Products. Prevention, Diagnosis, Treatment), 2022. V. 22. No. 4. P. 351–360 (in Russian). DOI: 10.30895/2221-996X-2022-22-4-351-360.
  20. Suligowski R., Ciupa T. Five waves of the COVID-19 pandemic and green-blue spaces in urban and rural areas in Poland. Environmental Research, 2023. V. 216. Part 3. DOI: 10.1016/j.envres.2022.114662.
  21. The Lancet. The COVID-19 pandemic in 2023: Far from over. Lancet, 2023. V. 401. Iss. 10371. P. 79. DOI: 10.1016/S0140-6736(23)00050-8.
  22. Zhang Y., Zhang Q., Zhao Y., Deng Y., Zheng H. Urban spatial risk prediction and optimization analysis of POI based on deep learning from the perspective of an epidemic. International Journal of Applied Earth Observation and Geoinformation, 2022. V. 112. DOI: 10.1016/j.jag.2022.102942.

For citation: Ogurtsov A.N., Dmitriev V.V. Integral assessment of social determinants of public health of the Kaliningrad Region population in the context of the COVID-19 pandemic (municipal level). InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 2. P. 162–179. DOI: 10.35595/2414-9179-2023-2-29-162-179 (in Russian)