The use of geo-information technology analysis the impact of open spaces on the individual’s mental state

DOI: 10.35595/2414-9179-2023-2-29-59-73

View or download the article (Rus)

About the Authors

Zhanna A. Buryak

Belgorod State National Research University, Federal and Regional Centre for Aerospace and Ground Monitoring of Objects and Natural Resources,
85, Pobedy str., Belgorod, 308019, Russia,
E-mail: buryak@bsu.edu.ru

Ulyana S. Moskvitina

Belgorod State National Research University,
85, Pobedy str., Belgorod, 308019, Russia,
E-mail: moskvitina@bsu.edu.ru

Abstract

The paper presents the possibilities of using digital elevation and terrain models to assess the impact of open spaces on the psychophysical state of a person. An approach to assessing the impact of the visible boundaries of the surrounding space is described, allowing the construction of virtual reality full-scale models of terrain with predetermined properties for personalization of psychotherapeutic scenarios. The first steps have been taken towards the creation of a methodology for assessing the aesthetic value of the landscape, from the standpoint of its direct influence on the psychophysical state of the observer. Thus, for three territories, fundamentally different in landscape conditions (high-rise buildings in New York, the highlands of the Alps and the gentle-hilly plain of the Central Russian Upland), the shape factor of the perceived space was calculated. It was done considering the surface curvature and the surface area of buildings using digital models of terrain and elevation in GIS. Through the coefficient of accommodation (AC), which compares the space form factor with a similarly calculated brain surface coefficient, the comfort of the environment for a particular person was assessed. In both examples of natural landscapes, AC takes values >0, which indicates comfortable conditions. Spaces with dense high-rise buildings (AC<0), have a more negative impact on the psycho-emotional state of the person. Although the changes in the accommodation coefficient of the perceived space along the route of observer’s movement depending on changes of volumetric area of visibility area was performed. It was found that the more varied the terrain, the more contrasting will be the response to the observer’s condition. The use of GIS-technology and 3D-modeling opens up the prospects of a new approach to the design of virtual reality, allowing to optimize and create personalized VR-programs of psycho-physiological correction.

Keywords

GIS, open space, personalized virtual reality, relief, DEM, visibility zone

References

  1. Aftanas L.I. Human emotional space: Psychophysiological analysis. Novosibirsk: Publishing House of the Siberian Branch of the RAS, 2000. 119 p. (in Russian).
  2. Baghaei N., Chitale V., Hlasnik A., Stemmet L., Liang H.N., Porter R. Virtual reality for supporting the treatment of depression and anxiety: Scoping review. JMIR Ment Health, 2021. V. 8 (9). e29681. DOI: 10.2196/29681.
  3. Bratman G.N., Anderson C.B, Berman M.G., Cochran B., de Vries S., Flanders J., Folke C., Frumkin H., Gross J.J., Hartig T., Kahn P.H.Jr., Kuo M., Lawler J.J., Levin P.S., Lindahl T., Meyer-Lindenberg A., Mitchell R., Ouyang Z., Roe J., Scarlett L., Smith J.R., van den Bosch M., Wheeler B.W., White M.P., Zheng H., Daily G.C. Nature and mental health: An ecosystem service perspective. Science Advances, 2019. V. 5 (7). eaax0903. DOI: 10.1126/sciadv.aax0903.
  4. Churilova E.A., Lopina E.M. Hexperience in studying aesthetic and consumer parameters of the environmenta. Moscow Economic Journal, 2021. No. 6. P. 31 (in Russian). DOI: 10.24411/2413-046X-2021-10332.
  5. Climent G., Rodríguez C., García T., Areces D., Mejías M., Aierbe A., Moreno M., Cueto E., Castellá J., Feli González M. New virtual reality tool (Nesplora Aquarium) for assessing attention and working memory in adults: A normative study. Appl Neuropsychol Adult., 2021. V. 28 (4). P. 403–415. DOI: 10.1080/23279095.2019.1646745.
  6. Dirin D.A. Landscape and aesthetic resources of mountain observations: assessment, rational use and protection (on the territory of the Ust-Koksinsky district of the Altai Republic). Barnaul: Azbuka, 2005. 260 p. (in Russian).
  7. Dobrokhotova T.A. Neuropsychiatry. Moscow: BINOM, 2006. 304 p. (in Russian).
  8. Eringis K.I., Budryunas A.-R.A. Essence and methodology of detailed ecological and aesthetic research of landscapes. Ecology and Aesthetics of Landscape. Vilnus: Mintis, 1975. P. 107–170. (in Russian).
  9. Ezhov V.V., Ezhov A.V., Manyshev S.B., Manysheva K.B. Professor Mikhail Dobrokhotov as a neurosis treatment inventor on the South Coast of Crimea. Herald of Physiotherapy and Health Resort Therapy, 2020. V. 26. No. 4. P. 103–110 (in Russian). DOI: 10.37279/2413-0478-2020-26-4-103-110.
  10. Gao T., Zhang T., Zhu L., Gao Y., Qiu L. Exploring psychophysiological restoration and individual preference in the different environments based on virtual reality. Int. J. Environ Res Public Health, 2019. V. 16 (17). 3102. DOI: 10.3390/ijerph16173102.
  11. Gorbunova T.Yu., Gorbunov R.V., Klyuchkina A.A. The aesthetic landscape value of the South-Eastern Crimea. Scientific Notes of the V.I. Vernadsky Crimean Federal University. Geography. Geology, 2017. V. 3 (69). No. 3-2. P. 237–249 (in Russian).
  12. Hsieh C.H., Li D. Understanding how virtual reality forest experience promote physiological and psychological health for patients undergoing hemodialysis. Front Psychiatry, 2022. V. 13. 1007396. DOI: 10.3389/fpsyt.2022.1007396.
  13. Jo H., Song C, Miyazaki Y. Physiological benefits of viewing nature: A systematic review of indoor experiments. Int. J. Environ Res Public Health, 2019. V. 16 (23). 4739. DOI: 10.3390/ijerph16234739.
  14. Kim B., Schwartz W., Catacora D., Vaughn-Cooke M. Virtual reality behavioral therapy. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2016. V. 60 (1). P. 356–360. DOI: 10.1177/1541931213601081.
  15. Kim P.E., Zee C.S. Imaging of the cerebrum. Neurosurgery, 2007. V. 61 (suppl. 1). 123-46. DOI: 10.1227/01.neu.0000279316.03266.cd.
  16. Kolbovsky E.Ju. Aesthetic estimation of landscapes: problems of methodology. Yaroslavl Pedagogical Bulletin, 2011. V. 3. No. 4. P. 161–166 (in Russian).
  17. Korchazhinskaya V.I., Popova L.T. The brain and spatial perception (unilateral spatial agnosia). Moscow: Publishing House of MSU, 1977. 87 p. (in Russian).
  18. Mietchen D., Gaser Ch. Computational morphometry for detecting changes in brain structure due to development, aging, learning, disease and evolution. Front Neuroinformatics, 2009. V. 3. 25. DOI: 10.3389/neuro.11.025.2009.
  19. Moskvitina U., Buryak Zh. A new approach to assessing the influence of the finite region shape of the surrounding open space on the human mental activity. 10th International Congress of Cognitive Psychotherapy. Abstract book. Rome: Erickson, 2021. P. 64.
  20. Moskvitina U.S. Method of macroencephalometry of cerebral hemispheres and cerebellum taking into account their accommodation in a closed space surrounding a person. Invention Patent RU 2692949 C1, 28.06.2019 (in Russian).
  21. Moskvitina U.S. Method of macroencephalometry of human brain hemi sphere. Invention Patent RU 2668697 C1, 02.10.2018 (in Russian).
  22. Moskvitina U.S., Buryak Zh.A. Method of macroencephalometry of cerebral hemispheres and cerebellum taking into account their accommodation in a closed space surrounding a person. Invention Patent RU 2725965 C1, 08.07.2020 (in Russian).
  23. Narozhnyaya A.G., Buryak Zh.A. Morphometric analysis of digital elevation models of the Belgorod Region at different degrees of generalization. Belgorod State University Scientific Bulletin. Natural Sciences Series, 2016. No. 25 (246). V. 37. P. 169–178 (in Russian).
  24. Nikolaev V.A. Landscape science: aesthetics and design. Moscow: Aspect Press, 2005. 176 p.
  25. Pavlinov I.Ya. Geometric morphometry—a new analytical approach to the comparison of computer images. Information Technology in Biodiversity Research. St. Petersburg, 2001. P. 65–90 (in Russian).
  26. Popov V.N., Chekalin S.I. Geodesy. Textbook for Universities. Moscow: Mining Book, 2007. 519 p. (in Russian).
  27. Reichert M., Braun U., Lautenbach S., Zipf A., Ebner-Priemer U., Tost H., Meyer-Lindenberg A. Studying the impact of built environments on human mental health in everyday life: Methodological developments, state-of-the-art and technological frontiers. Current Opinion in Psychology, 2019. V. 32. P. 158–164. DOI: 10.1016/j.copsyc.2019.08.026. PMID: 31610407.
  28. Shary P.A. Geomorphometry in Earth sciences and ecology, an overview of methods and applications. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2006. V. 8. No. 2. P. 458–473 (in Russian).
  29. Thompson-Butel A.G., Shiner C.T., McGhee J., Bailey B.J., Bou-Haidar P., McCorriston M., Faux S.G. The role of personalized virtual reality in education for patients post stroke — A qualitative case series. Journal of Stroke and Cerebrovascular Diseases, 2018. V. 28 (2). P. 450–457. DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.018.
  30. Victorov A.S., Koshkarev A.V., Likhacheva E.A. Modern methods and technologies in digital elevation modeling in Earth sciences. Geomorfologiya, 2016. No. 4. P. 86–88 (in Russian). DOI: 10.15356/0435-4281-2016-4-86-88.

For citation: Buryak Z.A., Moskvitina U.S. The use of geo-information technology analysis the impact of open spaces on the individual’s mental state. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 2. P. 59–73. DOI: 10.35595/2414-9179-2023-2-29-59-73 (in Russian)