Construction the velocity Field in a regular grid in the Tashkent Region on the basis interpolation of GNSS permanent stations data

DOI: 10.35595/2414-9179-2023-1-29-535-545

View or download the article (Rus)

About the Authors

Mirshodjon D. Makhmudov

Tashkent information technology university,
108, Amirа Temurа ave., Tashkent, 100084, Republic of Uzbekistan,
E-mail: makhmudov0907@gmail.com

Dilbarkhon Sh. Fazilova

National University of Uzbekistan named after Mirzo Ulugbek,
4, Universitetskaya str., Tashkent, 1000174, Republic of Uzbekistan,

Ulugh Beg Astronomical Institute of Uzbek Academy of Sciences,
33, Astronomicheskaya str., Tashkent, 100052, Republic of Uzbekistan,

Tashkent State Technical University named after Islam Karimov,
2, Universitetskaya str., Tashkent, 100095, Republic of Uzbekistan,

E-mail: dil_faz@yahoo.com

Abstract

The Republic of Uzbekistan is actively developing a network of stations of the Global Navigation Satellite System (GNSS), which is an integral part of the country’s national spatial data infrastructure. Particular attention in the republic has recently been paid to the practical use of the results of GNSS measurements and geoinformation security in areas with increased seismic hazard, especially near man-caused objects. The paper considers the territory of the Tashkent region—one of the most seismically active regions of the republic. GNSS measurements are often sparse and unevenly distributed, and to refine the “block” or “continuous” tectonic models and identify patterns of modern movements in this area, a spatial velocity model is needed, which can be obtained by interpolating discrete points to the remaining area not covered by measurements. The work used measurements at 14 GNSS points for the period from 2018 to 2020. Point velocities or the so-called velocity model obtained in the GAMIT/GLOBK program made it possible to estimate horizontal point velocities, the range of which varies from 21 mm/yr to 33 mm/yr. With respect to the “stable” Eurasian tectonic plate, the values of local displacements of the area were also calculated, which can be both a consequence of the movement of microblocks and the influence of technogenic factors (mining in the area of the Angren and Almalyk points). To obtain a continuous distribution field of the horizontal velocities of the region, the method of coupled interpolation of two-dimensional vectors of the velocity field was used, implemented in the GMT (Generic Mapping Tools) program. It was found that according to the geological data of the region, the interpolation method quite accurately allows to determine the main trends in the movements of the earth’s crust in the region. A rotational movement along the Karzhantau, Kumbel and Chatkal tectonic plates has been revealed. The values of horizontal displacements of points reached a minimum value of 3 mm in the plain part, and maximum values of up to 10 mm were noted in the mountainous areas of the region. The average velocity of stations in the region was 4 mm/year.

Keywords

GNSS network, velocity field, GMT, interpolation of vector data

References

  1. Abdrakhmatov K., Aldazhanov S.A., Hager B.H., Hamburger M.W., Herring T., Kalabaev K.B., Makarov V.I., Molnar P.H., Panasyuk S.V., Prilepin M.T., Reilinger R., Sadybakasov I.S., Souter B.J., Trapeznikov Y.A., Tsurkov V., Zubovich A. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature, 1996. V. 384. P. 450–453. DOI: 10.1038/384450A0.
  2. Allmendinger R. Reilinger R., Loveless J. Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics, 2007. V. 26. Iss. 3. TC3013. DOI: 10.1029/2006TC002030.
  3. Altamimi Z., Rebischung P., Métivier L., Collilieux X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 2016. V. 121. No. 8. P. 6109–31. DOI: 10.1002/2016jb013098.
  4. Artikov T.U., Ibragimov R.S., Ibragimova T.L., Kuchkarov K.I., Mirzaev M.A. Quantitative assessment of seismic hazard for the territory of Uzbekistan according to the estimated maximum ground oscillation rates and their spectral amplitudes. Geodynamics & Tectonophysics, 2018. V. 9. No. 4. P. 1173–1188 (in Russian). DOI: 10.5800/GT-2018-9-4-0389.
  5. Bian W., Wu J., Wu W. Recent crustal deformation based on interpolation of GNSS velocity in continental China. Remote Sensing, 2020. V. 12. P. 3753. DOI: 10.3390/rs12223753.
  6. Bogusz J., Kłos A., Grzempowski P., Kontny B. Modelling the velocity field in a regular grid in the area of Poland on the basis of the velocities of European permanent stations. Pure Appl. Geophys., 2014. 171. P. 809–833. DOI: 10.1007/s00024-013-0645-2.
  7. Dong D., Herring T.A., King R.W. Estimating regional deformation from a combination of space and terrestrial geodetic data. J. Geod, 1998. V. 72. P. 200–214. DOI: 10.1007/s001900050161.
  8. Fazilova D. Uzbekistan coordinate system transformation from CS42 to WGS84 using deformation grid model. Geodesy and Geodynamics, 2022. V. 13. Iss. 1. P. 24–30. DOI: 10.1016/j.geog.2021.10.001.
  9. Fazilova D.Sh., Magdiev Kh.N. Creating and updating of topographic maps height base in the new national spatial coordinate system: case Fergana valley. InterCarto. InterGIS. Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 155–164 (in Russian). DOI: 10.35595/2414-9179-2021-2-27-155-164.
  10. Fazilova D., Sichugova L. Deformation analysis based on GNSS measurements in Tashkent region. E3S Web Conf. 227 04002, 2021. DOI: 10.1051/e3sconf/202122704002.
  11. Giardini D., Grünthal G., Shedlock K.M., Zhang P. The GSHAP Global Seismic Hazard Map. International Handbook of Earthquake & Engineering Seismology. International Geophysics Series 81 B. Amsterdam: Academic Press, 2003. P. 1223–1239.
  12. Hackl M., Malservisi R., Wdowinski S. Strain rate patterns from dense GPS networks. Nat. Hazards Earth Syst. Sci., 2009. No. 9. P. 1177–1187. DOI: 10.5194/nhess-9-1177-2009.
  13. Herring T.A., King R.W., Floyd M., McClusky S.C. Introduction to GAMIT/GLOBK. Release 10.7. Technical report. Massachusetts Institute of Technology, 2018. Web resource: http://geoweb.mit.edu/gg/Intro_GG.pdf (accessed 10.09.2022).
  14. Hofmann-Wellenhof B., Moritz H. Physical Geodesy. 2nd edition. Wien: Springer, 2006. 403 p. DOI: 10.1007/978-3-211-33545-1.
  15. IERS Conventions (2010). IERS Technical Note 36. Gérard Petit and Brian Luzum (eds.). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. 179 p.
  16. Kahle H.G., Cocard M., Peter Y., Geiger A., Reilinger R., Barka A., Veis G. GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian Plates. Journal of Geophysical Research, 2000. 105(B10): 23. P. 23353–23370. DOI: 10.1029/2000JB900238.
  17. Khamidov H.L. The dislocations on the surface of the earth as a result of the strong earthquakes in the Western Tien Shan. Geodynamics, 2016. No. 1 (20). P. 119–132 (in Russian).
  18. Rebetsky Yu.L., Ibragimova T.L., Ibragimov R.S., Mirzaev M.A. Stress state of Uzbekistan’s seismoactive areas. Seismic Instruments, 2020, V. 56, No. 6, P. 679–700. DOI: 10.3103/S0747923920060079.
  19. Sandwell D.T., Wessel P. Interpolation of 2-D vector data using constraints from elasticity. Geophys. Research Letters, 2016. No. 43. P. 10703–10709. DOI: 10.1002/2016GL070340.
  20. Smith W.H.F., Wessel P. Gridding with continuous curvature splines intension. Geophysics, 1990. No. 55 (3). P. 293–305. DOI: 10.1190/1.1442837.
  21. Ulomov V.I. On the role of horizontal tectonic movements in seismogeodynamics and seismic hazard prediction. Physics of the Earth, 2004. No. 9. P. 14–30 (in Russian).
  22. Wessel P., Luis J.F., Uieda L., Scharroo R., Wobbe F., Smith W.H.F., Tian D. The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 2019. V. 20. P. 5556–5564. DOI: 10.1029/2019GC008515.
  23. Zubovich A.V., Wang X.Q., Scherba Y.G., Schelochkov G.G., Reilinger R., Reigber C., Mosienko O.I., Molnar P., Michajljow W., Makarov V.I., Li J., Kuzikov S.I., Herring T.A., Hamburger M.W., Hager B.H., Dang Y., Bragin V.D., Beisenbaev R. GPS velocity field for the Tienshan and surrounding regions. Tectonics, 2010. V. 29. TC6014. P. 23. DOI: 10.1029/2010TC002772.

For citation: Makhmudov M.D., Fazilova D.Sh. Construction the velocity Field in a regular grid in the Tashkent Region on the basis interpolation of GNSS permanent stations data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 535–545. DOI: 10.35595/2414-9179-2023-1-29-535-545 (in Russian)