Evaluation of the ADW interpolation for the average monthly air temperature

DOI: 10.35595/2414-9179-2023-1-29-511-520

View or download the article (Rus)

About the Authors

Tatiana N. Osipova

St. Petersburg State University, Institute for Earth Sciences,
31–33, 10th line of Vasilyevsky Island, St. Petersburg, 199178, Russia,
E-mail: t.osipova@spbu.ru

Elizaveta P. Samoylova

Voeikov Main Geophysical Observatory,
7, Karbysheva str., St. Petersburg, 194021, Russia,
E-mail: e.samoylova@spbu.ru


Article describes the quality analysis of climate maps for the Far Eastern Federal District. Observed station data from 497 meteorological stations are used as meteorological information. Monthly air temperature maps in January and July for two regions are obtained by angular distance weighting interpolation (ADW). The first region is located within the Central Yakut Plain, the Prilenskoe Plateau and the northern slopes of the Aldan Highlands, the absolute heights within the region do not exceed 500 m. The second region is located in Transbaikalia. The relief of the region is represented by plateaus and strongly dissected ridges with a height of more than 2 500 m. Meteorological stations are unevenly distributed over the territory in both regions. Mapping was performed using the free cross-platform geographic information system QGIS. The analysis of the errors carried out for 74 stations, showed that the accuracy of interpolation depends on the number of stations located on the territory and on the land forms. The quality analysis showed that the errors for the winter periods are larger than in the summer period. However, if the data of stations located in areas with high relative elevations are excluded, then the interpolation accuracy decreases sharply due to the underestimation of the features of the spatial temperature correlation between stations. The ADW method requires an understanding of the spatial correlation structure of the station data. The spatial relationships between stations can vary with season. Since the anisotropy of the fields of hydrometeorological characteristics depends on the nature of the relief of the territory and on the season, the errors in the reconstruction of the fields will also differ. The regional variations of the correlation decay distance (CDD) should be taken into account.


GIS, temperature maps, distance weighting interpolation (ADW), Far Eastern Federal District


  1. Caesar J., Alexander L., Vose R. Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 2006. V. 111. P. 1–10. DOI: 10.1029/2005JD006280.
  2. Ippolitov I.I., Kabanov M.V., Loginov S.V., Podnebesnykh  .V., Kharyutkina E.V. Variability of temperature behavior over the Asian territory of Russia in the period of global warming. Optika Atmosfery i Okeana (Atmospheric and Oceanic Optics), 2012. No. 2. P. 122–131 (in Russian).
  3. Kagan R.L. Averaging of meteorological fields. Leningrad: Hydrometeoizdat, 1979. 212 p. (in Russian).
  4. Kryukova S.V., Simakina T.E. Evaluation of methods for spatial interpolation of meteorological data. Society. Environment. Development, 2018. No. 1. P. 144–151 (in Russian).
  5. New M., Hulme M., Jones P. Representing twentieth-century space-time climate variability. Part II: Development of 1901–1996 monthly grids of terrestrial surface climate. Journal of Climate, 2000. P. 2217–2238. DOI: 10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.
  6. Novikova A.M., Polonskii A.B., Novikov A.A. Comparison of QGIS interpolation modules capabilities for marine climate research on duty with an array of low-security data. InterCarto. InterGIS. Proceedings of International Conference, 2016. V. 22. Part 1. P. 76–88 (in Russian).
  7. Polonskii A.B., Shokurova I.G. Statistical structure of the large-scale fields of temperature and salinity in the Black Sea. Physical Oceanography, 2008. V. 18. Iss. 1. P. 38–51.
  8. Shkolnik I.M., Akentyeva E.M., Klueva M.V., Stadnik V.V., Khlebnikova E.I., Fasolko D.V., Razova E.N., Rudakova Yu.L., Pavlova V.N. Federal districts: Climate change and economy. Proceedings of Voeikov Main Geophysical Observatory, 2022. Iss. 604. P. 55–201 (in Russian).
  9. Tebuev Kh.Kh., Kundetov A.O., Tutaev A.A. Interpolation method of temperature fields in the conditions of vertical zonation KBR. Izvestiya of Kabardino-Balcarian State Agrarian University named after V.M. Kokov. Technical Sciences, 2017. No. 2 (16). P. 73–77 (in Russian).

For citation: Osipova T.N., Samoylova E.P. Evaluation of the ADW interpolation for the average monthly air temperature. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 511–520. DOI: 10.35595/2414-9179-2023-1-29-511-520 (in Russian)