Morphometric analysis of the bottom topography of a large valley reservoir during its evolution

DOI: 10.35595/2414-9179-2023-1-29-465-481

View or download the article (Rus)

About the Authors

Anatoly V. Pogorelov

Kuban State University,
149, Stavropolskaya str., Krasnodar, 350040, Russia,
E-mail: pogorelov_av@bk.ru

Andrey A. Laguta

Kuban State University,
149, Stavropolskaya str., Krasnodar, 350040, Russia,
E-mail: alaguta@icloud.com

Petr B. Netrebin

Kuban State University,
149, Stavropolskaya str., Krasnodar, 350040, Russia,
E-mail: netrebinpetr@gmail.com

Abstract

Until now, the study of the morphology of the bottom of large reservoirs, subject to gradual siltation, received little attention. Morphometric descriptions of reservoirs are limited by the type, shape, altitude position, size of the bed, and the volume of water in them. The article presents the results of the analysis of the bottom relief of the Krasnodar Reservoir and the transformations of this relief for 2005–2021. The analysis was performed based on the materials of bathymetric surveys for the regulated volume of the reservoir on an area of 224 km2 with the construction of the corresponding digital relief models. The relief of the bottom of the reservoir is represented by flat areas of a flooded accumulative plain with prevailing slopes of about 0.2–0.4°, dissected by river channels of lower order tributaries. The transformation of the relief is caused by gradual siltation. The total volume of deposits for the specified area in 2005–2021 amounted to 127 million m3 with an average silt layer of 0.4 m. To describe the morphological properties of the bottom topography, we used geomorphometric techniques with the calculation of the BPI (Bathymetric Position Index) and the classification of mesoscale landforms based on it. For the bed, relief forms have been established related to three types of surfaces: flat (lower bank shelf), concave (depressions, deep depressions) and convex (reef crests, back reefs, mid-slope reefs). The constructed maps reflect the differentiated morphology of the bed surface, the evolution of landforms under conditions of continuous transformation of the basin, and also make it possible to judge the prevailing processes of morphogenesis. The coastal zone and the shallow part of the bed are the most complex in morphological terms. Here, along with reefs of different genesis, deep depressions and depressions in the form of underwater channels in advanced deltas can form on the accumulative shoal.

Keywords

reservoir, bottom topography, morphometric analysis, landforms, transformation

References

  1. Alekseevskii N.I., Berkovich K.M., Chalov R.S., Chalov S.R. Spatiotemporal variability in channel deformations on rivers of Russia. Geography and Natural Resources, 2012. No. 3. P. 13–21 (in Russian).
  2. Avakyan A.B., Saltankin V.P., Sharapov V.A. Reservoirs. Moscow: Mysl’, 1987. 331 p. (in Russian).
  3. Finarov D.P. Geomorphological analysis and forecasting of the reformation of the coastal zone and the bottom of reservoirs. Leningrad: Nauka, 1986. 227 p. (in Russian).
  4. Florinsky I.V. Geomorphometry today. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 394–448 (in Russian). DOI: 10.35595/2414-9179-2021-2-27-394-448.
  5. Geomorphometry: Concepts, Software, Applications. Oxford: Elsevier, 2009. 765 p.
  6. Guisan A., Weiss S.B., Weiss A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 1999. V. 143. P. 107–122.
  7. Jenness J. Topographic Position Index (TPI). 2006. V. 1.2. 46 p.
  8. Kalinin V.G., Pyankov S.V., Perevoshchikova O.A. On the formation of the underwater relief of valley reservoirs (by the example of the Kama Reservoir). Geographical Bulletin, 2018. No. 1 (44). P. 128–137 (in Russian). DOI: 10.17072/2079-7877-2018-1-128-137.
  9. Kurbatova I.E. Monitoring of the transformation of the Krasnodar reservoir using high resolution satellite data. Current Problems in Remote Sensing of the Earth from Space, 2014. V. 11. No. 3. P. 42–53 (in Russian).
  10. Laguta A.A., Pogorelov A.V. Peculiarities of Krasnodar water reservoir silting. Evaluation based on the data of bathymetric surveys. Geographical Bulletin, 2018. No. 4 (47). P. 54–66 (in Russian). DOI: 10.17072/2079-7877-2018-4-54-66.
  11. Laguta A.A., Pogorelov A.V. Peculiarities of delta formation in rivers flowing into the valley reservoir (a case study of Krasnodar reservoir). Geographical Bulletin, 2019. No. 3 (50). P. 119–134 (in Russian). DOI: 10.17072/2079-7877-2019-3-119-134.
  12. Lurie P.M., Panov V.D., Tkachenko Yu.Yu. Kuban River: Hydrography and flow regime. St. Petersburg: Gidrometeoizdat, 2005. 500 p. (in Russian).
  13. Nazarov N.N., Tyunyatkin D.G., Frolova I.V., Cherepanov A.V. Factors and conditions of sediment differentiation in the coastal zone of the Kama reservoirs. Geographical Bulletin, 2011. No. 4. P. 4–10 (in Russian).
  14. Nazarov N.N., Tyunyatkin D.G., Frolova I.V., Cherepanov A.V. Morpholithogenesis in the zone of alongshore sediment transport in the Kama Reservoir (St. 1. Accumulative forms). Geographical Bulletin, 2013. No. 1 (24). P. 33–39 (in Russian).
  15. Pogorelov A.V., Laguta A.A., Kiselev E.N. New data on silting of the Krasnodar reservoir. Geographical Bulletin, 2022. No. 2 (61). P. 166–179 (in Russian). DOI: 10.17072/2079-7877-2022-2-166-179.
  16. Pogorelov A., Laguta A., Kiselev E., Lipilin D. Features of the long-term transformation of the Krasnodar reservoir, near the mouth of the Kuban River, Russia. Journal of Geographical Sciences, 2021. V. 31. P. 1895–1904. DOI: 10.1007/s11442-021-1928-7.
  17. Verfaillie E., Doornenbal P., Mitchell A.J., White J., Van Lancker V. The bathymetric position index (BPI) as a support tool for habitat mapping, 2007. Web resource: https://www.researchgate.net/publication/242082725_Title_The_bathymetric_position_index_BPI_as_a_support_tool_for_habitat_mapping (accessed 01.03.2023).
  18. Weiss A.D. Topographic positions and landforms analysis (conference poster). Proceedings of the 21st Annual ESRI User Conference. July 9–13. San Diego, CA, 2001.
  19. Wilson M.F.J., O’Connell B., Brown C., Guinan J.C., Grehan A.J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Marine Geodesy, 2007. V. 30. No. 1–2. P. 3–35. DOI: 10.1080/01490410701295962.
  20. Zemlyanov I.V., Shikunova E.Yu., Gorelits O.V., Pavlovsky A.E. Using digital elevation models to refine modern morphometric characteristics of reservoirs. Modern problems of reservoirs and their watersheds. Scientific-practical conf. Perm, May 17–20, 2011. P. 189–193 (in Russian).

For citation: Pogorelov A.V., Laguta A.A., Netrebin P.B. Morphometric analysis of the bottom topography of a large valley reservoir during its evolution. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 465–481. DOI: 10.35595/2414-9179-2023-1-29-465-481 (in Russian)