Determination of the geometric parameters of vegetation using airborne laser scanning data

DOI: 10.35595/2414-9179-2023-1-29-452-464

View or download the article (Rus)

About the Authors

Ilya A. Rylskiy

M.V. Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: rilskiy@mail.ru

Marina S. Malevannaya

M.V. Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: malevannaya_m@mail.ru

Marina V. Gribok

M.V. Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: gribok.marina@gmail.com

Alexandr N. Panin

M.V. Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: alex_panin@mail.ru

Abstract

Vegetation is one of the most important components of the geographic environment. Creating vegetation maps and characterizing vegetation is a common task in forest management. When creating maps of the largest scales, the problem arises of determining the parameters of individual trees—their heights, crown diameters, coordinates of the position of trunks in space (the so-called tree-by-tree survey). Existing ground-based technologies for solving this problem are expensive and inefficient. Satellite imagery do not provide an acceptable result. Aerial photography is also not very suitable for solving this problem (for a number of reasons). The most promising is the use of airborne laser scanning using not too dense clouds of points of laser reflections (4–8 points per 1 m2), which makes it possible to provide such data with significant (up to several million hectares of forest per year per system) forest areas. Performing surveys with a higher density (including using unmanned aerial vehicles) seems to be irrational due to the impossibility of direct measurements of tree trunks and low productivity. The study was conducted on a test area in the North Caucasus region (Republic of Adygea) according to survey data from 2022 (autumn). This work is devoted to the development and evaluation of the results of using the methodology for determining the parameters of individual trees. To do this, it is proposed to use typical functions of relief analysis and hydrological modeling in combination with data filtering using statistical functions within a sliding window. The analysis is carried out using a regular-cell model of relative tree heights. The final result of the work is a point vector GIS layer, where the planned position of the point corresponds to the position of the tree trunk, and its height and crown diameter are recorded in the attribute table. The final results after a complete visual check on a regular cell data model and a selective manual check using orthomosaics and initial points of laser reflections can be assessed as acceptable, but in need of further improvement of the methodology.

Keywords

airborne imagery, remote sensing, GIS, LIDAR, forest inventory

References

  1. Allen Р.К., Stamos I., Troccoli A.A., Smith B., Leordeanu M., Hsu Y. 3D modeling of historic sites using range and image data. Proceedings of the 2003 IEEE International Conference on Robotics and Automation, 2003. V. 1. P. 145–150.
  2. Chen Q. Airborne lidar data processing and information extraction. Photogrammetric Engineering & Remote Sensing, 2007. V. 73. No. 2. P. 109–112.
  3. Gorgens E., Valbuena R., Rodriguez L. A method for optimizing height threshold when computing airborne laser scanning metrics. Photogrammetric Engineering & Remote Sensing, 2017. V. 1. P. 343–350.
  4. Haala N., Brenner C., Anders K.-H. 3D urban GIS from laser altimeter and 2D map data. International Archives of Photogrammetry and Remote Sensing, 1998. P. 339–346.
  5. Kapralov E.G., Koshkarev A.V., Tikunov V.S. Fundamentals of geoinformatics. Мoscow: Academy, 2004. P. 480.
  6. Korpela I. Mapping of understory lichens with airborne discrete-return LiDAR data. Remote Sensing of Environment, 2008. P. 3891–3897.
  7. Lohr U. Digital elevation models by laser scanning: Principle and applications. Third International Airborne Remote Sensing Conference and Exhibition, 1997. P. 174–180.
  8. Rylskiy I.A., Malevannaya M.S. Terrestrial laser scanning methods—new approaches to the information supply for geographic researches. Geodesy and Cartography, 2014. No. 8. С. 38–48 (in Russian). DOI: 10.22389/0016-7126-2014-890-8-38-48.
  9. Rylskiy I.A., Tikunov V.S. Perspectives of using airborne laser scanning systems for forest mapping. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya “Nauki o Zemle” (The Bulletin of Irkutsk State University. Series “Earth Sciences”), 2016. V. 15. P. 104–113 (in Russian).

For citation: Rylskiy I.А., Malevannaya M.S., Gribok M.V., Panin A.N. Determination of the geometric parameters of vegetation using airborne laser scanning data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 452–464. DOI: 10.35595/2414-9179-2023-1-29-452-464 (in Russian)