Regional features of the formation of pyrological environments in the steppes of Northern Eurasia based on Firms data

DOI: 10.35595/2414-9179-2023-1-29-423-436

View or download the article (Rus)

About the Authors

Vladimir M. Pavleichik

Institute of Steppe of the Ural Branch of the Russian Academy of Sciences,
11, Pionerskaya str., Orenburg, 460000, Russia,
E-mail: vmpavleychik@gmail.com

Zhanna T. Sivohip

Institute of Steppe of the Ural Branch of the Russian Academy of Sciences,
11, Pionerskaya str., Orenburg, 460000, Russia,
E-mail: sivohip@mail.ru

Yuriy A. Padalko

Institute of Steppe of the Ural Branch of the Russian Academy of Sciences,
11, Pionerskaya str., Orenburg, 460000, Russia,
E-mail: yapadalko@gmail.com

Abstract

Grass fires are characteristic of the vast region of Northern Eurasia, covering the landscapes of the steppes and adjacent natural areas. The study of the spatio-temporal heterogeneity of fires makes it possible to identify and evaluate the leading factors of the occurrence and spread of fires. Pyrological research is of particular relevance due to the negative impact on various groups of steppe biota and the quality of the environment, the lack of an objective understanding of the causes of the high variability of fire development indicators. The main objective of the study was to identify regional features of the formation of pyrologic environments in the long-term and intraannual aspects. The global archive of thermal anomalies MCD14ML (FIRMS) was adopted as the main source of fire data and the analyzed parameter itself. It is revealed that a specific feature of the FIRMS data archive is the possibility of fixing active fires on arable land, which is almost impossible to carry out directly from satellite images. In this regard, the greatest density of thermal anomalies is observed in the agriculturally developed provinces (western sectors of the steppes and adjacent territories), for which the practice of agricultural bollards remains a traditional way of farming. A comparison of the long-term dynamics of fires in arable land and pasture-hayfields shows a close relationship. Similar results were obtained during the analysis of the intra-annual (daily) distribution of thermal anomalies, the peaks of which occur at the beginning and the period of completion of agricultural work. This serves as indirect evidence that uncontrolled agricultural fires are the cause of a significant part of steppe fires. Regional pyrological conditions in the steppes of Northern Eurasia and adjacent territories have similar features in long-term dynamics and reflect the complex nature of the interaction between natural and anthropogenic factors. Understanding current trends in the development of fires can contribute to solving the problems of managing fire-hazardous situations.

Keywords

fires, steppe regions, pyrological situation, thermal anomalies

References

  1. Archibald S., Lehmann C., Gómez-Dansd J., Bradstocke R. Defining pyromes and global syndromes of fire regimes. PNAS, 2003. V. 110. No. 16. P. 6442–6447. DOI: 10.1073/pnas.1211466110.
  2. Artes T., Oom D., De Rigo D., Durrant T.H., Maianti P., Liberta G., San-Miguel-Ayanz J. A global wildfire dataset for the analysis of fire regimes and fire behavior. Scientific Data, 2019. V. 296. No. 6. DOI: 10.1038/s41597-019-0312-2.
  3. Bartalev S.A., Plotnikov D.E., Loupian E.A. Mapping of arable land in Russia using multi-year time series of MODIS data and the LAGMA classification technique. Remote Sensing Letters, 2016. V. 7. P. 269–278.
  4. Berdengalieva A.N. Analysis of the Lower Volga floodplain landscapes burning according to active fire and burnt areas satellite data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 346–358 (in Russian). DOI: 10.35595/2414-9179-2022-1-28-346-358.
  5. Dara A., Baumann M., Hölzel N., Hostert P. Post-Soviet land-use change affected fire regimes on the Eurasian steppes. Ecosystems, 2020. No. 23. P. 943–956. DOI: 10.1007/s10021-019-00447-w.
  6. Dubinin M., Lushchekina A., Radeloff V. Climate, livestock, and vegetation: What drives fire increase in the arid ecosystems of Southern Russia? Ecosystems, 2011. V. 14. P. 547–562. DOI: 10.1007/s10021-011-9427-9.
  7. Freitag M., Kamp J., Dara A., Kuemmerle T., Sidorova T.V., Stirnemann I.A., Velbert F., Hölzel N. Post-Soviet shifts in grazing and fire regimes changed the functional plant community composition on the Eurasian steppe. Global Change Biology, 2020. P. 1–14. DOI: 10.1111/GCB.15411.
  8. Hall J.V., Loboda T.A., Giglio L., McCarty G.W. A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sensing of Environment, 2016. V. 184. P. 506–521.
  9. Lin H.W., Jin Y.F., Giglio L., Foley J.A., Randerson J.T. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires. Ecological Applications, 2012. V. 22. P. 1345–1364.
  10. McCarty J.L., Ellicott E.A., Romanenkov V., Rukhovitch D., Koroleva P. Multi-year black carbon emissions from cropland burning in the Russian Federation. Atmospheric Environment, 2012. V. 63. P. 223–238.
  11. Pavleichik V.M., Chibilev A.A. Steppe fires in conditions the regime of reserve and under changing anthropogenic impacts. Geography and Natural Recourses, 2018. V. 39. No. 3. P. 212–221. DOI: 10.1134/S1875372818030046.
  12. Pavleychik V.M., Chibilev A.A., Padalko Yu.A. Pyrological situation in the steppes of Northern Eurasia. Doklady Earth Sciences, 2022. V. 505. Part 2. P. 591–597. DOI: 10.1134/S1028334X22080141.
  13. Shinkarenko S.S., Doroshenko V.V., Berdengalieva A.N. Burned areas dynamics in zonal landscapes of the south-east of the European part of Russia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya (News of the Russian Academy of Sciences. Geographical series), 2022. V. 86. No. 1. P. 122–133 (in Russian). DOI: 10.31857/S2587556622010113.
  14. Shinkarenko S.S., Doroshenko V.V., Berdengalieva A.N., Komarova I.A. Dynamics of arid landscapes burning of Russia and adjacent territories according to active fire data. Current Problems in Remote Sensing of the Earth from Space, 2021. V. 18. No. 1. P. 149–164 (in Russian). DOI: 10.21046/2070-7401-2021-18-1-149-164.
  15. Volkova E.A., Rachkovskaya E.I., Sadvokasov R.A., Safronova I.N., Khramtsov E.N. Botanical and geographical zoning. National atlas of the Republic of Kazakhstan. Natural conditions and resources. Almaty, 2010. V. 1. P. 110 (in Russian).
  16. Witham C., Manning A. Impacts of Russian biomass burning on UK air quality. Atmospheric Environment, 2007. V. 41. P. 8075–8090.
  17. Zones and types of vegetation in Russia and adjacent territories. Map scale 1:8 000 000. Moscow: Integration, 1999. 64 p. (in Russian).

For citation: Pavleichik V.M., Sivohip Z.T., Padalko Yu.A. Regional features of the formation of pyrological environments in the steppes of Northern Eurasia based on Firms data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 423–436. DOI: 10.35595/2414-9179-2023-1-29-423-436 (in Russian)