Analysis of the dynamics of condition forest plant communities in the “Makarovsky” nature sanctuary (Sakhalin Island) by remote sensing data

DOI: 10.35595/2414-9179-2023-1-29-393-405

View or download the article (Rus)

About the Authors

Vyacheslav A. Melkiy

Institute of Marine Geology and Geophysics of the Far Eastern branch of Russian Academy of Sciences, Laboratory of Volcanology and volcano hazard,
1B, Nauki str., Yuzhno-Sakhalinsk, 693022, Russia,
E-mail: vamelkiy@mail.ru

Alexey A. Verkhoturov

Institute of Marine Geology and Geophysics of the Far Eastern branch of Russian Academy of Sciences, Center of collective use,
1B, Nauki str., Yuzhno-Sakhalinsk, 693022, Russia,
E-mail: ussr-91@mail.ru

Abstract

The results of the analysis of changes in the state of forest plant communities in the “Makarovsky” Nature Sanctuary in the period from 1980 to 2020 are presented in the article. In the process of our work there was created a model of the vegetation cover of the “Makarovsky” Sanctuary, which made it possible to determine the difference between plant communities and their condition. The data for the construction of the cartographic model were formalized spectral characteristics of the surface of plant communities recorded on Landsat-1–7 and Sentinel-2 images. In a specially protected natural area, 7 classes of objects have been identified when conducting uncontrolled classification using ArcGIS according by their spectral characteristics. The division of dark coniferous and deciduous forests, the identification of the boundaries of plots with different species composition of forest stands and the allocation of felling sites was performed on the basis of the normalized vegetation index (NDVI). The accuracy of determining the composition of forest stands based on the results of interpretation was checked by data of geobotanical research data on the territory of the “Makarovsky” Nature Sanctuary. As part of the vegetation cover of the “Makarovsky” Nature Sanctuary, 8 forest communities were identified—spruce-fir, stone-birch forests, cedar elfin formation, valley deciduous, birch, birch-spruce forests, woodlands, sometimes larch forests, and 2 non-forest communities—Kuril bamboo formation and meadow vegetation. Forest communities occupy 95 % of the territory of the “Makarovsky” Sanctuary. The landscape and climatic conditions of the area are optimal for the growth of spruce-fir forests, which cover 44 % of the total area of the “Makarovsky” Nature Sanctuary. Birch and stone-birch forests (39 %) are widespread on logged land in Sanctuary. There is a wide distribution of secondary succession in the territory of the “Makarovsky” Nature Sanctuary. The composition of forest stands in Sanctuary has changed significantly over the research period in favor of young coniferous trees. Vegetation in the “Makarovsky” Nature Sanctuary has preserved its natural pristine appearance and reflects both altitude differentiation and landscape-zonal features of the middle taiga subzone of Sakhalin. The use of satellite images of medium spatial resolution made it possible to accurately analyze the state of forests of the “Makarovsky” Sanctuary. More detailed researches require the use of unmanned aerial vehicles.

Keywords

remote sensing, geoinformation mapping, plant communities, forest ecosystems, sustainable development

References

  1. Ataev Z.V., Bratkov V.V., Abdulaev K.A., Balguev T.R., Gadzhibekov M.I. Geographical aspects of biological and landscape diversity in the designed Samur National Park in the Eastern Caucasus. Dagestan State Pedagogical University. Natural and Exact Sciences, 2016. V. 10. No. 3. P. 91–102 (in Russian). Web resource: https://www.elibrary.ru/download/elibrary_27206594_96536233.pdf (accessed 25.05.2023).
  2. Avrunev E.I., Yambaev Kh.K., Opritova O.A., Chernov A.V., Gogolev D.V. Accuracy evaluation of 3D models by using unmanned aerial system. Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT), 2018. V. 23. No. 3. P. 211–228 (in Russian). Web resource: https://geocartography.ru/source/vestnik_ssugt/2018_3_211-228 (accessed 25.05.2023).
  3. Bartalev S.A., Egorov V.A., Zharko V.O., Lupyan E.A., Plotnikov D.E., Khvostikov S.A. Current state and development prospects of Satellite Mapping Methods of Russia’s Vegetation Cover. Current Problems in Remote Sensing of the Earth from Space, 2015. V. 12. No. 5. P. 203–221 (in Russian).
  4. Cherepanov A. Spectral characteristics of vegetation and vegetation indexes. Geomatica, 2011. No. 2. P. 98–102 (in Russian).
  5. Cherepanov A., Druzhinina E. Spectral characteristics of vegetation and vegetation indexes. Geomatica, 2009. No. 3. P. 28–32 (in Russian).
  6. Chibilev A.A. History and Current status of Reserve Management and Study in Russia. Herald of the Russian Academy of Sciences, 2017. V. 87. No. 3. P. 181–190 (in Russian). DOI: 10.1134/S1019331617020022.
  7. Gonsamo A., Chen J.M. Circumpolar vegetation dynamics product for global change study. Remote Sensing of Environment, 2016. V. 182. No. 1. P. 13–26. DOI: 10.1016/j.rse.2016.04.022.
  8. Imai N., Titin J., Kita S., Ong R.C., Kitayama K. Co-benefits of sustainable forest management for carbon sequestration. Co-benefits of Sustainable Forestry. Ecological Research Monographs. Springer–Tokyo, 2012. P. 129–148. DOI: 10.1007/978-4-431-54141-7_7.
  9. Khlebnikova T.A., Opritova O.A. Experimental studies of the dense digital model accuracy by using unmanned aerial system. Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT), 2018. V. 23. No. 2. P. 119–129 (in Russian). DOI: 10.33764/2618-981X-2019-4-2-213-220.
  10. Kolobov A.N., Frisman E.Ya. Individual-based model of spatio-temporal dynamics of mixed forest stands. Ecological Complexity, 2016. V. 27. P. 29–39. DOI: 10.1016/j.ecocom.2015.10.002.
  11. Korznikov K.A., Belyaeva N.G., Sandlersky R.B. Modeling the forest cover of the Vengeri River Basin on the Sakhalin Island using the remote sensing data. Russian Journal of Forest Science, 2020. No. 5. P. 399–411 (in Russian). DOI: 10.31857/S002411482005006X.
  12. Kravtsova V.I. Space mapping methods: a textbook for universities. Moscow: Moscow University Press, 1995. 239 p. (in Russian).
  13. Krestov P.V., Barkalov V.Yu., Taran A.A. Botanical and geographical zoning of Sakhalin Island. Flora and fauna of Sakhalin Island: Proceedings of the International Sakhalin project. V. 1. Vladivostok: Dalnauka, 2004. P. 67–92 (in Russian). Web resource: https://www.researchgate.net/publication/267452843_Botaniko-geograficeskoe_rajonirovanie_ostrova_Sahalin (accessed 25.01.2023).
  14. Kuzmichev E.P., Trushina I.G., Lopatin E.V. Volumes of illegal forest logging in Russian Federation. Forestry Information: Electronic Online Magazine, 2018. No. 1. P. 63–77 (in Russian). DOI: 10.24419/LHI.2304-3083.2018.1.06.
  15. Lobishcheva I.I., Melkiy V.A. Assessment of environmental situation and problems of biodiversity conservation in the reserve Makarovsky (Sakhalin Island). Tomsk State University Journal, 2010. No. 339. P. 201–204 (in Russian).
  16. Marconi S., Chiti T., Nolè A., Valentini R., Collalti A. The role of respiration in estimation of net carbon cycle: coupling soil carbon dynamics and canopy turnover in a novel version of 3D-CMCC forest ecosystem model. Forests, 2017. V. 8. No. 6. ID 220. DOI: 10.3390/f8060220.
  17. Markova O.I., Tikunov V.S. New technologies for modern geoinformatics. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 5–34 (in Russian). DOI: 10.35595/2414-9179-2022-1-28-5-34.
  18. Myers S.L. China’s voracious appetite for timber stokes fury in Russia and beyond. The New York Times, 2019. 10 April. Section A. P. 4. Web resource: https://www.nytimes.com/2019/04/09/world/asia/chinas-voracious-appetite-for-timber-stokes-fury-in-russia-and-beyond.html (accessed 25.01.2023).
  19. Sabirov R.N., Sabirova N.D. Forest fires in the Northern regions of Sakhalin. Journal of the Sakhalin Museum, 2013. V. 20. No. 1. P. 235–244 (in Russian). Web resource: https://elibrary.ru/download/elibrary_36684746_36763741.pdf (accessed 25.01.2023).
  20. Sabirov R.N., Sabirova N.D., Melkiy V.A., Belyanina Ya.P., Kartushina E.A. Flora of the Sakhalin nature reserve “Makarovsky”. Journal of the Sakhalin Museum, 2009. No. 16. P. 302–318 (in Russian). Web resource: https://elibrary.ru/download/elibrary_36684097_72675301.pdf (accessed 25.01.2023).
  21. Shahtahmassebi A., Yang N., Wang K., Moore N., Shen Z. Review of shadow detection and deshadowing methods in remote sensing. Chinese Geographical Science, 2013. V. 23. No. 4. P. 403–420. DOI: 10.1007/s11769-013-0613-x.
  22. Tikunov V.S., Tsapuk D.A. Sustainable development of territories: cartographic and geoinformation support. Moscow–Smolensk: Publishing House of Smolensk State University, 1999. 176 p.
  23. Verkhoturov А.А. Analysis of changes in the State of ecosystems on Atlasova Island (Kuril Islands). Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT), 2020. V. 25. No. 3. P. 139–150 (in Russian). DOI: 10.33764/2411-1759-2020-25-3-139-150.
  24. Verkhoturov A.A., Melkiy V.A. Mapping of vegetation communities of the subzone of dark coniferous forests of the South Sakhalin based on space surveys. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26 No. 4. P. 60–72 (in Russian). DOI: 10.35595/2414-9179-2020-4-26-60-72.

For citation: Melkiy V.A., Verkhoturov A.A. Analysis of the dynamics of condition forest plant communities in the “Makarovsky” nature sanctuary (Sakhalin Island) by remote sensing data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 393–405. DOI: 10.35595/2414-9179-2023-1-29-393-405 (in Russian)