Automated mapping of faults in the area of Poyasok Isthmus (Sakhalin) by remote sensing data

DOI: 10.35595/2414-9179-2023-1-29-346-360

View or download the article (Rus)

About the Authors

Vyacheslav A. Melkiy

Institute of Marine Geology and Geophysics of the Far Eastern branch of Russian Academy of Sciences, Laboratory of volcanology and volcanic danger,
1B, Nauki str., Yuzhno-Sakhalinsk, 693022, Russia,
E-mail: vamelkiy@mail.ru

Olesya V. Kuptsova

Sakhalin State University, Technical Oil and Gas Institute,
2, Pogranichnaya str., Yuzhno-Sakhalinsk, 630023, Russia,
E-mail: Korsuncevaolesy@gmail.com

Alexey A. Verkhoturov

Institute of Marine Geology and Geophysics of the Far Eastern branch of Russian Academy of Sciences, Center for collective use,
1B, Nauki str., Yuzhno-Sakhalinsk, 693022, Russia,
E-mail: ussr-91@mail.ru

Abstract

Automated mapping of disturbances in the earth’s crust allows you to quickly identify areas of development of dangerous geological processes, and to determine the measures that should be taken to organize the safe operation of extended linear structures (roads and railways, pipelines, power lines) that run through areas with difficult natural conditions. The main trigger mechanism causing the activation of dangerous geological processes is displacements in zones of active faults in the earth’s crust. Monitoring the state of fault zones and timely detection of manifestations of hazardous processes are urgent tasks for ensuring the sustainable development of regional infrastructure. The area of the Poyasok isthmus (Sakhalin Island) was chosen as the object of research, along the territory of which there are automobile and railway roads, power lines, and the main pipeline of the Sakhalin-2 project was laid along the isthmus coast. Lineament analysis of space images and SRTM data using the LEFA software package by binary morphological erosion method to highlight boundaries, as well as made selection long lines by performing mathematical operations using Canny algorithms, with subsequent Hough transformations, were carried out to identify faults of research territory. The obtained intermediate data were processed using the tools of the QGIS software package and made it possible to compile a map of disjunctive disturbances for the area under study. Lineament analysis made it possible to identify faults that bound the block megastructure of the Poyasok isthmus from the north and south. The saddle of Poyasok isthmus separates the large Central Sakhalin and South Sakhalin segments of the Hokkaido-Sakhalin system of island uplifts. Structures of the Central-Kamyshovy and South-Kamyshovy lifted megablocks (3 orders) in the West-Sakhalin Mountains adjoin directly to the saddle. The southern part of the Central-Kamyshovy mega-uplift is represented by a series of uplifts separated by narrow depressions bounded by faults. The number of uplifts increases with the distance to the north from the Poyasok isthmus. The northern part of the South-Kamyshovy mega-uplift is divided by faults of the northern-east strike into block structures. The obtained data are suitable for performing detailed seismic zoning.

Keywords

remote sensing, geoinformation mapping, dangerous geological processes, faults

References

  1. Akovetskiy V.G., Afanasiev A.V., Ilchenko A.A. Aerospace monitoring in the problems for assessment of geoecological risks for Accidental spills of oil and petroleum products. Computational technologies, 2021. V. 26. No. 1. P. 72–85 (in Russian). DOI: 10.25743/ICT.202 1.26.1.006.
  2. Bachmanov D.M., Kozhurin A.I., Trifonov V.G. Database of active faults of Eurasia. Geodynamics and tectonophysics, 2017. V. 8. No. 4. P. 711–736 (in Russian).
  3. Ballard D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 1981. V. 13. No. 2. P. 111–122.
  4. Bartalev S.A., Egorov V.A., Zharko V.O., Lupyan E.A., Plotnikov D.E., Khvostikov S.A. Current state and development prospects of satellite mapping methods of Russia’s vegetation cover. Current Problems in Remote Sensing of the Earth from Space, 2015. V. 12. No. 5. P. 203–221 (in Russian).
  5. Bondur V.G., Zverev A.T. A Method of Earthquake forecast based on the lineament dynamic analysis using satellite imagery. Issledovanie Zemli iz Kosmosa, 2005. No. 3. P. 37–52 (in Russian).
  6. Bratkov V.V., Vorobyov V.A., Melkiy V.A., Verkhoturov A.A. Mapping the dynamics of plant communities in the northern part of the boreal forests of Sakhalin Island based on remote sensing data. Monitoring. Science and technology, 2020. No. 3 (45). P. 6–13 (in Russian). DOI: 10.25714/MNT.2020.45.001.
  7. Canny J.F. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986. V. 8. P. 679–698.
  8. Dolgopolov D.V., Melkiy V.A., Baborykin M.Yu. The use of earth remote sensing technologies to provide geotechnical monitoring and mapping in pipeline transport. Regional Geosystems, 2022. V. 46 (3). P. 339–355 (in Russian). DOI: 10.52575/2712-7443-2022-46-3-339-355.
  9. Hiromichi F., Man D.C., Phan A. Digital Earth: A platform for the SDGs and green transformation at the global and local level, employing essential SDGs variables. Big Earth Data, 2021. V. 5. No. 4. P. 476–496. DOI: 10.1080/20964471.2021.1948677.
  10. Karpik A.P. Methodological and technological bases of geoinformation support of territories: monograph. Novosibirsk: Siberian State Geodesy Academy (SSGA), 2004. 259 p.
  11. Kharakhinov V.V., Galtsev-Bezyuk S.D., Тereshchenkov A.A. Faults of Sakhalin. Pacific Geology, 1984. No. 2. P. 77–86 (in Russian).
  12. Kravtsova V.I. The possibilities of comparing for multitemporal imagery of various resolution under the northern river deltas dynamics investigation. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 1. P. 277–291 (in Russian). DOI: 10.35595/2414-9179-2021-1-27-277-291.
  13. Kudrina М.А. Using Hough transformation for detecting lines and circles in pictures. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2014. V. 16. No. 4 (2). P. 476–478 (in Russian).
  14. Kuptsova O.V., Melkiy V.A., Verkhoturov A.A. Identification of disjunctive dislocations as one of the parameters for estimating a territory seismicity of North Sakhalin. 4th GeoProNH. IOP Conference Series: Earth and Environmental Science, 2021. V. 946. Id. 012003. DOI: 10.1088/1755-1315/946/1/012003.
  15. Kuptsova O.V., Verkhoturov A.A., Melkiy V.A. Mapping of faults on territory of the North Sakhalin plain by remote sensing data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 1. P. 317–329 (in Russian). DOI: 10.35595/2414-9179-2021-1-27-317-329.
  16. Lomtev V.L., Zherdeva O.A. To seismotectonic Sakhalin: new approaches. Geology and useful minerals of the World Ocean, 2015. No. 3. P. 56–68 (in Russian).
  17. Malinnikov V.A., Altynov A.E., Popov S.M., Stetsenko A.F. Monitoring of the natural environment by aerospace means. Moscow: MIIGAiK, 2009. 140 p. (in Russian).
  18. Melkiy V.A., Tikunova I.N., Eryomchenko E.N., Chereshnia O.Y., Hiromichi F., Sukendra M., Tahjana J. GIS decision-making support for the use of energy resources of Sakhalin. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2017. V. 23. Part 3. P. 132–143 (in Russian). DOI: 10.24057/2414-9179-2017-3-23-132-143.
  19. Mercante E., Antunes J.F.G. Simulation of a gas pipeline pathway integrating remote sensing data and geographic information systems. Acta Scientiarum. Technology, 2010. V. 32. No. 2. P. 171–178.
  20. Romanyuk V.A., Pishchal’nik V.M., Zarubina D.V. Analysis of the ice cover variations in the arctic sea of Okhotsk based on aircraft and satellite observations InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 441–449 (in Russian). DOI: 10.35595/2414-9179-2022-1-28-441-449.
  21. Rozhdestvensky V.S. The role of shifts in the formation of the structure of Sakhalin Island. Geotectonics, 1982. No. 4. P. 99–111 (in Russian).
  22. Savinykh V.P., Malinnikov V.A., Uchaev D.V., Uchaev Dm.V. Automated technology of decoding and analysis of linear and ring structures in satellite images. Izvestia vuzov “Geodesy and Aerophotosurveying”, 2012. No. 6. P. 53–65 (in Russian).
  23. Sergeev K.F. On the tectonic nature of the uplift of the Western Sakhalin Mountains. Pacific geology, 1982. No. 1. P. 75–83 (in Russian).
  24. Shevyrev S.L. LEFA software: an automatized structural analysis of remote sensing imagery in MATLAB environment. Advances in current natural sciences, 2018. No. 10. P. 138–143 (in Russian).
  25. Streltsov М.I., Kozhurin А.I. Active faults and strong earthquakes in Sakhalin Isl. (Aprelovka active fault, results of trenching). Yuzhno-Sakhalinsk: Institute of Marine Geology & Geophysics FEB RAS, 2002. 4 p. (in Russian).
  26. Ulomov V.I. Seismic hazard assessment and updating of engineering solutions. Earthquake engineering. Constructions safety, 2008. No. 3. P. 16–21 (in Russian).
  27. Ulomov V.I., Shumilina L.S. A set of maps of the general seismic zoning of the territory of the Russian Federation—OSR-97. Scale 1:8 000 000. Explanatory note and list of cities and settlements located in earthquake-prone areas. Moscow: UIFE RAS, 1999. 57 p. (in Russian).
  28. Veselov O.V., Gretskaya E.V., Ilyev A.Ya., Kononov V.E., Kochergin E.V., Patrikeev V.N., Semakin V.P., Senachin V.N., Ageev V.N., Vasyuk I.B., Volgin P.F., Zlobina L.M., Zhigulev V.V., Kornev O.S., Kochergin A.V., Kudelkin V.V. Tectonic zoning and hydrocarbon potential of the Sea of Okhotsk. Moscow: Nauka, 2006. 130 p. (in Russian).
  29. Voeikova O.A., Nesmeyanov S.A., Serebryakova L.I. Neotectonics and active breaks of Sakhalin. Moscow: Nauka, 2007. 185 p. (in Russian).
  30. Xue L., Pan J. Edge detection combining wavelet transform and Canny operator based on fusion rules. IEEE. 2009 International Conference on Wavelet Analysis and Pattern Recognition, IEEE, 2009. P. 324–328. DOI: 10.1109/ICWAPR.2009.5207422.
  31. Zverev A.T., Malinnikov V.A., Arellano-Baesa A. Studying dynamics of lineaments caused by earthquakes in South America, using the lineament analysis of ASTER (TERRA) satellite data. Izvestia vuzov “Geodesy and aerophotosurveying”, 2005. No. 5. P. 56–65 (in Russian).

For citation: Melkiy V.A., Kuptsova O.V., Verkhoturov A.A. Automated mapping of faults in the area of Poyasok Isthmus (Sakhalin) by remote sensing data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 346–360. DOI: 10.35595/2414-9179-2023-1-29-346-360 (in Russian)