Surface temperature algorithm for data loss recovery Landsat 8–9 Collection 2 Level 2

DOI: 10.35595/2414-9179-2023-1-29-318-329

View or download the article (Rus)

About the Authors

Anna A. Gosteva

Federal Research Center Krasnoyarsk Science Center,
50, Akademgorodok, Krasnoyarsk, 660036, Russia,
E-mail: agosteva@icm.krasn.ru

Aleksandra K. Matuzko

Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences (ICM SB RAS),
50/44, Akademgorodok, Krasnoyarsk, 660036, Russia,
E-mail: akmatuzko@icm.krasn.ru

Oleg E. Yakubailik

Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences (ICM SB RAS),
50/44, Akademgorodok, Krasnoyarsk, 660036, Russia,
E-mail: oleg@icm.krasn.ru

Abstract

The use of thermal images for the analysis of urban areas is presented in Proceedings of InterCarto. InterGIS, on the example of the city of Krasnoyarsk according to Landsat 8 data. New Landsat 8–9 collection 2 level 2 data became available in March 2021. The data has been supplemented with valuable scientific products such as atmospheric parameters (atmospheric spectral transmittance, up-going radiation and down-going radiation), earth surface temperatures, thermal radiation, quality assessment mask. A detailed study of the data showed that for many territories previously studied by the authors, data were not provided in full. There is partial or complete loss of data in the emissivity layer, and as a consequence the loss is repeated in the Earth’s surface temperature layers. The same situation with data loss is observed in a number of other large Russian cities. The current situation required a detailed study of the documentation describing the Landsat 8–9 algorithms. Having studied all the stages of the algorithm execution, the authors managed to restore the sequence of calculations, while retaining additional atmospheric parameters. The lost data in the emissivity channel has been replaced with a new layer computed via NDVI. As a result, the authors tested the operation of the proposed algorithm on the territory of the city of Krasnoyarsk. The result of the algorithm execution is layers with surface temperature values without data loss, except for scenes with high cloudiness. There is a slight discrepancy between the surface temperature values when using the described algorithm and initial data, due to the use of different sources to determine the emissivity.

Keywords

Landsat 8–9, temperature, remote sensing, LST GIS, thermal images

References

  1. Campbell J.B., Wynne R.H. Introduction to remote sensing. 5th Edition. New York: The Guilford Press, 2011. 667 p.
  2. Gosteva A.A., Matuzko A.K., Yakubailik O.E. Remote methods in studying the temperature of the earth’s surface in cities (on the example of Krasnoyarsk, Russia). InterCarto. InterGIS. Proceedings of the International Conference, 2018. V. 24. Part 2. P. 195–205 (in Russian). DOI: 10.24057/2414-9179-2018-2-24-195-205.
  3. Gosteva A.A., Matuzko A.K., Yakubailik O.E. Identification of changes in urban environment on the basis of the satellite data of the infrared range (on the example of Krasnoyarsk). InterCarto. InterGIS. Proceedings of International conference, 2019. V. 25. Part 2. P. 90–100 (in Russian). DOI: 10.35595/2414-9179-2019-2-25-90-100.
  4. Grishchenko M.Yu., Kalitka L.S. Study of the seasonal variability of the Krasnodar thermal field based on space images from the Landsat 8 satellite. InterCarto. InterGIS. Proceedings of the International conference, 2019. V. 25. Part 2. P. 101–111 (in Russian). DOI: 10.35595/2414-9179-2019-2-25-101-111.
  5. Grishchenko M.Yu., Lucher D.A., Bocharnikov M.V. Estimation of the possibility of interpretation of vegetation on the basis of thermal satellite images on the example of the Southern Urals and Kuznetsk Alatau. InterCarto. InterGIS. Proceedings of the International conference, 2022. V. 28. Part 1. P. 496–507 (in Russian). DOI: 10.35595/2414-9179-2022-1-28-496-507.
  6. Irons J.R., Loveland T.R. Eighth Landsat satellite becomes operational. Photogrammetric Engineering and Remote Sensing, 2013. V. 79. No. 5. P. 398–401.
  7. Parastatidis D., Mitraka Z., Chrysoulakis N., Abrams M. Online global land surface temperature estimation from Landsat. Remote Sensing, 2017. V. 9. No. 12:1208. DOI: 10.3390/rs9121208.
  8. Sobrino J., Jimenez J.-C., Paolini L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 2004. V. 90. Iss. 4. P. 434–440. DOI: 10.1016/j.rse.2004.02.003.
  9. Wan Z., Zhang Y., Zhang Q., Li Z. Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 2004. No. 25 (1). P. 261–274. DOI: 10.1080/0143116031000116417.

For citation: Gosteva A.A., Matuzko A.K., Yakubajlik O.E. Surface temperature algorithm for data loss recovery Landsat 8–9 Collection 2 Level 2. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 318–329. DOI: 10.35595/2414-9179-2023-1-29-318-329 (in Russian)