GIS of hydrological and environmental safety of the Selenga River Basin: structure, content and functionality

DOI: 10.35595/2414-9179-2023-1-29-88-103

View or download the article (Rus)

About the Authors

Sergey V. Pyankov

Perm State University,
15, Bukireva str., Perm, 614990, Russia,

Endon Zh. Garmaev

Baikal Institute of Nature Management SB RAS,
6, Sakhyanovoy str., Ulan-Ude, Republic of Buryatiya, 670047, Russia,

Rinat K. Abdullin

Perm State University,
15, Bukireva str., Perm, 614990, Russia

Andrey N. Shikhov

Perm State University,
15, Bukireva str., Perm, 614990, Russia

Alexander A. Aurzhanaev

Baikal Institute of Nature Management SB RAS,
6, Sakhyanovoy str., Ulan-Ude, Republic of Buryatiya, 670047, Russia

Vladimir N. Chernykh

Baikal Institute of Nature Management SB RAS,
6, Sakhyanovoy str., Ulan-Ude, Republic of Buryatiya, 670047, Russia

Tatyana V. Sudnitsyna

Perm State University,
15, Bukireva str., Perm, 614990, Russia


The transboundary basin of the Selenga river (the main tributary of Lake Baikal) is characterized by widespread and frequent hazardous events of climatic, hydrological and geomorphological nature. To integrate, display and analyze various data on these events, as well as provide them to the scientific community, a web GIS “Hydrological and environmental safety of the Selenga river basin” has been developed. The structure of the web GIS includes layers and databases that characterize the average long-term and extreme climatic and hydrological conditions in the basin, hazardous processes of hydrological and geomorphological nature, as well as their negative impact on landscapes, settlements and infrastructure. Both external databases and services (long-term weather and hydrological data series, WorldClim 2.0 database, ERA5-Land reanalysis and other) and previously unpublished result of the authors’ studies were used for web GIS content. The web-GIS development is based on open source software and libraries. A feature of the web GIS in comparison with previously published analogues for other river’s basins is an information rich climate section, which allows to assess various manifestations of the observed climate change in the Selenga river basin. Also, the data on several potentially hazardous natural processes like mudflows or aufeis formation are published on the service for the first time. Prospects for the development and improvement of the web GIS are associated with the publication of new GIS layers and databases compiled by the authors, with the development of hazard and risk assessment maps for various types of hazardous hydrological events. In addition, climatic characteristics based on modern ERA5 reanalysis and future climate projections for the 21st century are planned to be published.


web-GIS, Selenga river basin, hazardous hydrological events, climate change, mapping


  1. Alexander L.V., Zhang X., Peterson T.C., Caesar J., Gleason B., Klein Tank A.M.G., Haylock M., Collins D., Trewin B., Rahimzadeh F., Tagipour A., Rupa Kumar K., Revadekar J., Griffiths G., Vincent L., Stephenson D.B., Burn J., Aguilar E., Brunet M., Taylor M., New M., Zhai P., Rusticucci M., Vazquez-Aguirre J.L. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 2006. V. 111. D05109. DOI: 0.1029/2005JD006290.
  2. Ayzel G., Varentsova N., Erina O., Sokolov D., Kurochkina L., Moreydo V. OpenForecast: The First Open-Source Operational Runoff Forecasting System in Russia. Water, 2019. V. 11. No. 1546. DOI: 10.3390/w11081546.
  3. Bazhenova O.I., Bardash A.V., Makarov S.A., Opekunova M.Y., Tukhta S.A., Tyumentseva E.M. The functioning of erosion-channel systems of the river basins of the south of Eastern Siberia. Geosciences, 2020. V. 10. No. 176. DOI: 10.3390/geosciences10050176.
  4. Borisova T.A. Geoecological assessment of natural and anthropogenic risk in the Selenga River basin. Abstract of PhD geogr. sci. thesis. Ulan-Ude, 2010. 23 p. (in Russian).
  5. Borshch S.V., Simonov Yu.A., Khristoforov A.V. Flood forecasting and early flood warning system on the rivers of the Black Sea Coast of the Caucasus and the Kuban Basin. Hydrometeorological Research and Forecasting, 2015. Special Iss. 356. 247 p. (in Russian).
  6. Borsch S., Simonov Y., Khristoforov A., Semenova N., Koliy V., Ryseva E., Krovotyntsev V., Derugina V. Russian rivers streamflow forecasting using hydrograph extrapolation method. Hydrology, 2022. V. 9. No. 1. DOI: 10.3390/hydrology9010001.
  7. Bulygina O., Razuvaev V., Korshunova N., Groisman P. Climate variations and changes in extreme climate events in Russia. Environmental Research Letters, 2007. V. 2 (4). No. 045020. DOI: 10.1088/1748-9326/2/4/045020.
  8. Chernokulsky A., Kozlov F., Zolina O., Bulygina O., Mokhov I., Semenov V. Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades. Environmental Research Letters, 2019. V. 14 (4). No. 045001. DOI: 10.1088/1748-9326/aafb82.
  9. Chernykh V.N., Ayurzhanaev A.A., Zharnikova M.A., Sodnomov B.V., Shikhov A.N., Tsydypov B.Z., Garmaev E.Zh., Pyankov S.V. Mapping of aufeis in the transboundary basin of the Chikoy River. Geographical Bulletin, 2022. No. 62 (3). P. 169–179 (in Russian). DOI: 10.17072/2079-7877-2022-3-169-179.
  10. Chernyshov M.S. Natural-climatic and anthropogenic factors formation of the level regime of Lake Baikal. Abstract of PhD geogr. sci. thesis. Irkutsk, 2022. 22 p. (in Russian).
  11. Fick S.E., Hijmans R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017. V. 37. P. 4302–4315. DOI: 10.1002/joc.5086.
  12. Frolov A.V., Asmus V.V., Borshch S.V., Vil’fand R.M., Zhabina I.I., Zatyagalova V.V., Krovotyntsev V.A., Kudryavtseva O.I., Leont’eva E.A., Simonov Y.A., Stepanov Y.A. GIS-Amur system of flood monitoring, forecasting, and early warning. Russian Meteorology and Hydrology, 2016. V. 41 (3). P. 157–169. DOI: 10.3103/S1068373916030018.
  13. Frolova N.L., Belyakova P.A., Grigoriev V.Yu., Sazonov A.A., Zotov L.V. Long-term fluctuations in river flow in the Selenga basin. Water Resources, 2017. V. 44 (3). P. 243–255 (in Russian). DOI: 10.7868/S0321059617030105.
  14. Garmaev E.Zh., Khristoforov A.V. Water resources of the rivers of the Baikal basin: the basics of their use and protection. Novosibirsk: GEO, 2010. 227 p. (in Russian).
  15. Garmaev E.Zh., Pyankov S.V., Shikhov A.N., Ayurzhanaev A.A., Sodnomov B.V., Abdullin R.K., Tsydypov B.Z., Andreev S.G., Chernykh V.N. Mapping modern climate change in the Selenga River basin. Russian Meteorology and Hydrology, 2022. V. 47 (3). P. 113–122. DOI: 10.3103/S1068373922020054.
  16. Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. et al. High-resolution global maps of 21st-century forest cover change. Science, 2013. V. 342. P. 850–853. DOI: 10.1126/science.1244693.
  17. Harris I., Jones P.D., Osborn T.J., Lister D.H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. International Journal of Climatology, 2014. V. 34. P. 623–642. DOI: 10.1002/joc.3711.
  18. Kalinin V.G., Pyankov S.V. Application of GIS technologies in hydrological studies. Perm: Alex-Press, 2010. 2017 p. (in Russian).
  19. Kichigina N.V. Flood hazard on the rivers of the Baikal Region. Geography and Natural Resources, 2018. V. 39 (2). P. 120–129. DOI: 10.1134/S187537281802004X.
  20. Muñoz-Sabater J., Dutra E., Agustí-Panareda A., Albergel C., Arduini G., Balsamo G., Boussetta S., Choulga M., Harrigan S., Hersbach H., Martens B., Miralles D.G., Piles M., Rodríguez-Fernández N.J., Zsoter E., Buontempo C., Thépaut J.-N. ERA5-land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 2021. V. 13 (9). P. 4349–4383. DOI: 10.5194/essd-13-4349-2021.
  21. Pyankov S., Shikhov A., Ayurzhanaev A., Chernykh V., Abdullin R., Shabalina T. Application of GIS technologies to assess hydrological and environmental safety of the Selenga River basin. Science and Global Challenges of the 21st Century—Science and Technology. Perm Forum 2021. Lecture Notes in Networks and Systems, 2022. V. 342. Springer, Cham. DOI: 10.1007/978-3-030-89477-1_13.
  22. Sinyukovich V.N., Chernyshov M.S. Water regime of Lake Baikal under conditions of climate change and anthropogenic influence. Quaternary International, 2019. V. 524. P. 93–101. DOI: 10.1016/j.quaint.2019.05.023.
  23. Tsydypov B.Z., Sodnomov B.V., Chernykh V.N., Ilyin Y.M., Gurzhapov B.O., Ayurzhanaev A.A., Semenova M.V., Zharnikova M.A., Alymbaeva Z.B., Batotsyrenov E.A., Li F., Cheng H., Bazarzhapov T., Boldanov T., Dong S., Garmaev E.Z. Intensity assessment of еrosion-accumulative processes in the Selenga middle mountains (case study of the gully network of the Nizhnyaya Bulanka depression, Western Transbaikalia). Geosciences (Switzerland), 2020. V. 10 (10). P. 1–15. DOI: 10.3390/geosciences10100387.
  24. Yermolaev O.P., Maltsev K.A., Mukharamova S.S., Kharchenko S.V., Vedeneeva E.A. Cartographic model of river basins in European Russia. Geography and Natural Resources, 2017. No. 2. P. 27–36 (in Russian). DOI: 10.21782/GIPR0206-1619-2017-2(27-36).

For citation: Pyankov S.V., Garmaev E.Zh., Abdullin R.K., Shikhov A.N., Aurzhanaev A.A., Chernykh V. N., Sudnitsyna T.V. GIS of hydrological and environmental safety of the Selenga River Basin: structure, content and functionality. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 88–103. DOI: 10.35595/2414-9179-2023-1-29-88-103 (in Russian)