Application of magnetic susceptibility measurement for mapping and assessment of ecological quality in urban topsoils

DOI: 10.35595/2414-9179-2022-2-28-913-925

View or download the article (Eng)

About the Authors

Andrei Vasiliev

Perm State Agro-Technological University, Faculty of Soil Science, Agrochemistry, Ecology and Commodity Research,
Petropavlovskaia St., 23, 614990, Perm, Russia;
E-mail: a.a.vasilev@list.ru

Mikhail Razinsky

Perm State Agro-Technological University, Faculty of Soil Science, Agrochemistry, Ecology and Commodity Research,
Petropavlovskaia St., 23, 614990, Perm, Russia.

Svetlana Gorokhova

Perm State Agro-Technological University, Faculty of Soil Science, Agrochemistry, Ecology and Commodity Research,
Petropavlovskaia St., 23, 614990, Perm, Russia;
E-mail: gorohova.s@hotmail.com

Abstract

The article presents the results of geostatistical mapping of the magnetic susceptibility of the urban top soil. Soil magnetometry is well suited for rapid monitoring of pollution in urban areas due to its high sensitivity, ease of measurement, rapidity, high reproducibility of analysis, and low cost. This method allows obtaining large datasets with high resolution. The purpose of the study: spatial modeling of magnetic susceptibility and ecological-geochemical assessment of the top soil of Kudymkar city. The research area covers a section of the city with a total area of 32 km². Spatial modeling was carried out by the geostatistical method based on 51 soil samples. The background magnetic susceptibility of the soils of the city is 3–4 times higher than the magnetic susceptibility of the soils of the non-contaminated regional background. Soils with high and very high magnetic susceptibility occupy more than 30 % of the city area. Anomalous zones of soil magnetic pollution or magnetic “hot spots” formed near industrial facilities, heating boilers, on roadside soils with heavy traffic. A scale for the volumetric magnetic susceptibility of soils was developed on the centile analysis of the data. Strongly magnetic soils contain elevated concentrations of Zn, Cu, and Ni. The concentrations and names of pollutant metals in urban soils depend on the techno-geochemical specialization of cities. It can be recommended that the Environmental Services of cities use measurements of the magnetic susceptibility to monitor the ecological and geochemical state of soils and identify areas of city soils contaminated with heavy metals.

Keywords

magnetic susceptibility, soil heavy metals pollution, geostatistics, ecological valuation

References

  1. Alekseenko V.A., Alekseenko A.V. Chemical elements in geochemical systems. Clarks of soils in residential landscapes. Rostov-on-Don: Publishing House of the Southern Federal University, 2013. 380 p. (in Russian).
  2. Aparin B.F., Sukhacheva E.Yu. Classification of urban soils in Russian soil classification system and international classification of soils. Byulleten Pochvennogo instituta im. V.V. Dokuchaeva. 2015. No. 79. P. 53–72 (in Russian).
  3. Bakharev P.N. et al. Technogenic elements in especially protected ecosystems of west ural taiga. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences. 2012. Vol. 14. No. 1–8. P. 2136–2139 (in Russian).
  4. Chashchin A.N. Mapping the agrochemical properties of soil using Ordinary kriging. AgroEcoInfo. 2020. No. 1. P. 1–10 (in Russian).
  5. Chevychelov A.P., Alekseev A.A., Kuznetsova L.I. Magnetic susceptibility of permafrost soils of the forest catena in Central Yakutia. Siberian Forest Journal. 2021. No. 2. P. 32–42 (in Russian).
  6. Decree of the Governor of the Perm Territory dated April 19, 2018 No. 36 “On approval of the forest plan of the Perm Territory for 2018–2027”. Bulletin of laws of the Perm Territory, legal acts of the Governor of the Perm Territory, the Government of the Perm Territory, executive bodies of state power of the Perm Territory. No. 17. Part 2. 04.30.2018 (in Russian).
  7. Dmitriev E.A. Mathematical statistics in soil science. Moscow: URSS, 2008. 326 p. (in Russian).
  8. Eremchenko O.Z. et al. The estimation of ecological risk in connection with the heavy metals accumulation in soil of urban forests. Vestnik Permskogo universiteta. Biologija. 2018. No. 1. P. 70–80 (in Russian).
  9. Gladysheva M.A., Ivanov A.V., Stroganova M.N. Detection of technogenically contaminated soil areas based on their magnetic susceptibility. Eurasian Soil Science. 2007. No. 2. P. 235–242 (in Russian).
  10. Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water research. 1980. Vol. 14. No. 8. P. 975–1001.
  11. IUSS Working Group WRB World Reference Base for Soil Resources. 2014. Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome: Food and Agriculture Organization (FAO) of the United Nations, 2015. 203 p.
  12. Kapička A. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. Journal of Geochemical Exploration. 1999. Vol. 66. No. 1–2. P. 291–297.
  13. Korotaev N.Ya. Soils of the Perm Region. Perm: Perm book publishing house, 1962. 276 p. (in Russian).
  14. Magiera T. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma. 2006. Vol. 130. No. 3–4. P. 299–311.
  15. Maksimovich N.G., Cheremnykh N.V., Khairulina E.A. Ecological consequences of liquidation of the Kizelovsky coal basin. Geographic Bulletin. 2006. No. 2. P. 128–134 (in Russian).
  16. Mikov O.A., Yazikov E.G. Methodology for carrying out kappametry for ecological research. Geology and ecology. Tomsk: TGU Publishing House, 1995. Vol. 1. P. 286–293 (in Russian).
  17. Muller G. Heavy-metals in sediment of the Rhine-changes since 1971. Umschau in Wissenschaft und Technik. 1979. Vol. 79. No. 24. P. 778–783.
  18. Nikiforova E.M. et al. Main features and contamination of sealed soils in the east of Moscow city. Environmental Geochemistry and Health. 2021. P. 1–15.
  19. Ogureeva G.N. Biodiversity of biomes in Russia. Plains biomes. Moscow: FGBU “IGKE”. 2020. 623 p. (in Russian).
  20. PND F 16.1:2.2:2.3:3.36-2002 Quantitative chemical analysis of soils, methodology for measuring the total content of cadmium, cobalt, manganese, copper, nickel, lead, chromium and zinc in soils, bottom sediments, sewage sludge and waste using the flame atomic absorption spectrometry. Moscow, 2011. 22 p. (in Russian).
  21. Regions of Russia. The main socio-economic indicators of cities. 2020: statistical collection. Rosstat. Moscow: Federal State Statistics Service, 2020. 456 p. (in Russian).
  22. Report “On the state and protection of the environment of the Perm Territory in 2019”. Perm: Ministry of Natural Resources, Forestry and Ecology of the Perm Territory, 2020. 288 p. (in Russian).
  23. Reshetnikov M.V., Dobrolyubova N.V. Magnetic susceptibility and heavy metal concentration in soils of the urbanized terrains (on the example of town Saratov). Tsvetnye Metally. 2009. No. 11. P. 15–18 (in Russian).
  24. Shishkin M.A., Lapteva A.K. Ecological and geochemical analysis of modern landscapes of the Kama region. Ekaterinburg: IEGM UB RAN, 2009. 284 p.
  25. State annual report “The state and protection of the environment of the Perm region for 2012”. Ed. L.I. Harun, I.V. May. Perm: VK-Service LLC, 2013. 232 p. (in Russian).
  26. Świdwa-Urbańska J., Batlle-Sales J. Data quality oriented procedure, for detailed mapping of heavy metals in urban topsoil as an approach to human health risk assessment. Journal of Environmental Management. 2021. Vol. 295. P. 113019.
  27. Vasiliev A.A., Chashchin A.N. Heavy metals in the soils of the city of Chusovoy: assessment and diagnostics of pollution. Perm: FGBOU VPO Perm State Agricultural Academy, 2011. 197 p. (in Russian).
  28. Vasiliev A.A., Romanova A.V., Gilev V.Yu. Colour and soil hydromorphism in the Permskii krai. Perm agrarian journal. 2014. No. 1 (5). P. 28–38 (in Russian).
  29. Vasiliev A.A., Lobanova E.S. Magnetic and geochemical assessment of the soil cover of the urbanized territories of the Cis-Urals on the example of the city of Perm. Perm: FGBOU VPO Perm State Agricultural Academy, 2015. 243 p. (in Russian).
  30. Vasiliev A., Gorokhova S., Razinsky M. Technogenic Magnetic Particles in Soils and Ecological-Geochemical Assessment of the Soil Cover of an Industrial City in the Ural, Russia. Geosciences. 2020. Vol. 10. No. 11. P. 1–35.
  31. Vodyanitskii Yu.N., Mergelov N.S., Goryachkin S.V. Diagnostics of gleyzation upon a low content of iron oxides (using the example of tundra soils in the Kolyma Lowland). Eurasian Soil Science. 2008. No. 3. P. 261–279 (in Russian).
  32. Vodyanitskii Yu.N. Soil pollution with heavy metals and metalloids and their environmental hazard (analytical review). Moscow: Moscow State University named after M.V. Lomonosov, 2017. 191 p. (in Russian).
  33. Wedepohl K.H. The composition of the continental crust. 1995. Vol. 59. No. 7. P. 1217–1232.
  34. Yost R., Uehara G., Fox R. Geostatistical analysis of soil chemical properties of large land areas. II. Kriging. Soil Science Society of America Journal. 1982. Vol. 46. No. 5. P. 1033–1037.

For citation: Vasiliev A., Razinsky M., Gorokhova S. Application of magnetic susceptibility measurement for mapping and assessment of ecological quality in urban topsoils. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 913–925. DOI: 10.35595/2414-9179-2022-2-28-913-925