Agroforestry assessment of protective forest stands using remote data and geoinformation technologies

DOI: 10.35595/2414-9179-2022-2-28-871-884

View or download the article (Rus)

About the Authors

Alexander V. Koshelev

Federal Scientific Center of Agroecology, Complex Melioration and Protective Afforestation of the Russian Academy of Sciences (FSC of Agroecology RAS),
Universitetskiy avenue, 97, 400062, Volgograd, Russia;
E-mail: alexkosh@mail.ru

Maria O. Shatrovskaya

Federal Scientific Center of Agroecology, Complex Melioration and Protective Afforestation of the Russian Academy of Sciences (FSC of Agroecology RAS),
Universitetskiy avenue, 97, 400062, Volgograd, Russia;
E-mail: shatrovskayam@vfanc.ru

Abstract

At present, it is not economically feasible to use ground methods for inventorying forest plantations, since the scale and relevance of this process have increased significantly, which requires promptness in solving problems of recognizing protective forest belts from aero and space images and deciphering them. From this it follows that in order to draw up recommendations on forest reclamation measures aimed at increasing the durability of forest plantations, it is necessary to use the available remote sensing data and modern GIS technologies when examining protective forest plantations. The use of modern technologies will allow for a more qualitative assessment of the state of forest plantations in the Volgograd region. The use of the free desktop geographic information system QGIS in research demonstrates a number of possibilities, in particular, deciphering the current state and conducting digital inventory mapping of protective forest plantations based on GIS technologies and aerospace methods. Subsequently, the obtained data will be applied in the development of methods and principles that are scientifically substantiated and aimed at the rational use of resources and the regulation of anthropogenic impacts on the agroforest landscapes of the region. The study was carried out in the southern part of the Ilovlinsky District of the Volgograd region, located in the subzone of chestnut soils on the Kachalino test site. As a result of the study, the use of QGIS made it possible to decipher protective forest plantations in order to determine their spatial distribution, quantity, species and structural composition. On the laid out sites, the main reference schemes of rock mixing were compiled and key signs of protective forest belts were identified during interpretation. The mapping of the forest fund was carried out on the basis of data obtained in the course of visual and instrumental interpretation. The results obtained will become the basis for the development of a regional agroforestry reclamation geoinformation system necessary for updating existing forest maps, monitoring the state of forest plantations and planning various forest management activities aimed at the effective management of the agroforestry fund of the Volgograd region.

Keywords

cartography, agroforestry, protective forest stands, canopy, deciphering signs, GIS

References

  1. Balashov I.V., Kashnitskii S.A., Bartalev S.A., Bartalev S.S., Burtsev M.A., Vorushilov I.I., Egorov V.A., Zharko V.O., Kobets D.A., Konstatinova A.M., Loupian E.A., Saigin I.A., Senko K.S., Stytsenko F.V., Sychugov I.G., Khvostikov S.A., Khovratovich T.S. VEGA-Les: information system for complex monitoring of forests and hunting grounds in Russia. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2020. Vol. 17. No. 4. P. 73–88. DOI: 10.21046/2070-7401-2020-17-4-73-88 (in Russian).
  2. Baranov V.A., Ivanov A.V. Agroforest landscapes of the southeast of European Russia: structure, evolution, optimization. Saratov: Nauchnaya kniga, 2006. 52–56 p. (in Russian).
  3. Barlow J., Louzada J., Parry L., Hernandez M., Hawes J., Peres C.A., Vaz-de-Mello F.Z., Gardner T.A. Improving the design and management of forest strips in human dominated tropical landscapes: a field test on Amazonian dung beetles. Journal of Applied Ecology. 2010. № 47. P. 779–788.
  4. Chimitdorzhiev T.N., Dmitriev A.V., Kirbizhekova I.I., Sherkhoeva A.A., Baltukhaev A.K., Dagurov P.N. Remote optical-microwave measurements of forest parameters: modern state of research and experimental assessment of potentials. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. Vol. 15. No. 4. P. 9–26. DOI: 10.21046/2070-7401-2018-15-4-9-24 (in Russian).
  5. Franklin Steven E. Remote sensing for sustainable forest management. New York: CRC Press, 2001. 424 p.
  6. Haddaway N.R. The multifunctional roles of vegetated strips around and within agricultural fields. A systematic map protocol. Environmental Evidence. 2016. 11 p. DOI: 10.1186/s13750-016-0067-6.
  7. Koshelev A.V., Tkachenko N.A., Shatrovskaya M.O. Decoding of forest belts using satellite images. IOP Conf. Series: Earth and Environmental Science. 2021. Vol. 875. 012065 p. DOI: 10.1088/1755-1315/875/1/012065. (in Russian)
  8. Kotlyarova E.G. The importance of forest plantations in creating an environmentally safe design of the agricultural landscape. Bulletin of the Kursk State Agricultural Academy. 2014. No. 9. P. 62–66 (in Russian).
  9. Kravtsova V.I. Features of decoding of northern forests on ultra-high resolution satellite images. Forestry, 2013. No. 1. P. 56–65 (in Russian).
  10. Kravtsova V.I., Loshkareva A.R. Issledovanie severnoi granitsy lesa po kosmicheskim snimkam raznogo razresheniya (Study of the northern forest line using space imagery of different resolutions). Vestnik Moskovskogo universiteta. Seriya 5: Geografiya. 2010. No. 6. P. 49–57 (in Russian).
  11. Kulik K.N. Forest reclamation is the basis for creating sustainable agricultural landscapes in conditions of insufficient moisture. Forestry journal. 2016. Vol. 6. No. 3 (23). P. 29–40.
  12. Kulik K.N., Barabanov A.T., Manaenkov A.S., Kulik A.K. Substantiation of the forecast of the development of protective afforestation in the Volgograd region. Problems of Forecasting. 2017. No. 6. P. 93–100 (in Russian).
  13. Kulik K.N., Koshelev A.V. Methodological basis for agroforestry assessment of protective forest plantations based on remote monitoring data. Forestry Engineering Journal. 2017. No. 3. P. 107–114 (in Russian).
  14. Kulik K.N., Rulev A.S., Dorokhina Z.P. Agro-landscape mapping of the Nizhnekhopersky region. In the collection: Adaptive systems and environmental technologies of agricultural production in arid areas of the Volga-Don province. Moscow, 2003. P. 53–62 (in Russian).
  15. Kulik K.N., Rulev A.S., Yuferev V.G. Remote cartographic assessment of degradation processes in agricultural landscapes of southern Russia. Proceedings of the Nizhnevolzhsky agrouniversitetskiy complex: Science and higher professional education. 2009. No. 4 (16). P. 12–25 (in Russian).
  16. Kulik K.N., Rulev A.S., Yuferev V.G., Bakurova K.B., Dorokhina Z.P., Koshelev A.V., Berezovikova O.Y. Methodological guidelines for remote ecological and economic monitoring of arid pastures based on GIS technologies. Moscow, 2009. P. 38 (in Russian).
  17. Manaenkov A.S. Development of the fundamentals of steppe and protective afforestation: theoretical, applied aspects and tasks in modern conditions. Bulletin of PSTU. Series: Forest. Ecology. Nature Management. 2016. No. 2 (30). P. 5–23 (in Russian).
  18. Pavlovsky E.S. Ecological and social problems of agroforestry. Moscow: Agropromizdat, 1988. P. 152–153 (in Russian).
  19. Rulev A.S., Anopin V.N., Yuferev V.G., Rulev G.A. Geoinformation analysis of the state of roadside forest plantations. Proceedings of the Orenburg State Agrarian University, 2014. No. 3 (47). P. 42–45 (in Russian).
  20. Terekhin E.A. Influence of the parameters of forest plantations on their spectral response (on the example of forests in the south of the Central Russian Upland). Modern problems of remote sensing of the Earth from space, 2020. No. 17 (7). P. 142–154. DOI: 10.21046/2070-7401-2020-17-7-142-154 (in Russian).
  21. Tkachenko N.A., Koshelev A.V. Mapping of protective forest cover of agro-landscapes of the Volgograd Volga region. Bulletin of Agroindustrial Complex of Stavropol. 2017. No. 2 (26). P. 137–143 (in Russian).
  22. Volosyuk A.I., Topaz A.A. Remote sensing data processing in the SNAP ESA softwar package. GIS technologies in geosciences: materials of the rep. scientific-practical. Seminar of students and young scientists. 2018. P. 160–162 (in Russian).
  23. Zharko V.O., Bartalev S.A., Egorov V.A. Investigation of forest growing stock volume estimation possibilities over Russian Primorsky Krai region using Proba-V satellite data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. Vol. 15. No. 1. P. 157–168. DOI: 10.21046/2070-7401-2018-15-1-157-168 (in Russian).
  24. Zhirin V.M., Knyazeva S.V., Eidlina S.P. Assessment of biometric parameters of plantations based on the images of intercrown space on ultra-high resolution satellite images Forest Science. 2018. P. 163–177. DOI: 10.7868/S0024114818030014 (in Russian).

For citation: Koshelev A.V., Shatrovskaya M.O. Agroforestry assessment of protective forest stands using remote data and geoinformation technologies. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 871–884. DOI: 10.35595/2414-9179-2022-2-28-871-884 (in Russian)