Mapping of the magnetic susceptibility of soils of the city of Chaykovskiy

DOI: 10.35595/2414-9179-2022-2-28-800-812

View or download the article (Rus)

About the Authors

Andrey A. Vasiliev

FSBEI HE Perm State Agro-Technological University named after academician D.N. Pryanishnikov,
Petropavlovskaya str., 23, 614990, Perm, Russia;
E-mail: a.a.vasilev@list.ru

Aleksey N. Chashchin

FSBEI HE Perm State Agro-Technological University named after academician D.N. Pryanishnikov,
Petropavlovskaya str., 23, 614990, Perm, Russia;
E-mail: chascshin@mail.ru

Abstract

The article presents the results of an assessment of the heterogeneity of the volumetric magnetic susceptibility of soils in the city of Chaikovsky, Perm Territory, based on the results of its spatial modeling. Determination of magnetic susceptibility makes it possible to estimate the concentration of technogenic magnetic particles in urban soils. Their sources in the atmosphere and soil cover of urbanized landscapes are emissions from vehicles, thermal power plants, and industrial enterprises. The non-stoichiometric technogenic magnetite-maghemite complex of minerals in urban soils has an abnormally high magnetic susceptibility and contains potentially dangerous chemical elements belonging to the heavy metals (HM) group in the composition of the crystal lattice of magnetic particles. Cartographic materials make it possible to assess the environmental risk for city residents, identify unfavorable areas and conduct a spatial analysis of the relationship between their location and pollution sources. The purpose of the research is spatial modeling of the magnetic susceptibility of soils in the city of Chaikovsky. The research area covers a section of the city with a total area of 22 km². Spatial modeling was carried out using geostatistical and deterministic methods based on 140 points. As a result of cross-validation, it was found that the most accurate interpolation method is “Ordinary Kriging” with the help of which the boundaries of the contaminated areas of the city of Chaikovsky are established. Within these boundaries, soil samples were taken, in which the content of nickel, copper, zinc, and lead was determined. According to the data obtained, areas with high magnetic susceptibility of soils have higher concentrations of heavy metals. To bring the research results to the administration and residents of the city, a Web GIS application has been developed, access to which is organized through the GitHub platform.

Keywords

magnetic susceptibility, spatial modeling, heavy metals, urban soils

References

  1. Abdullin R.K., Ponomarchuk A.I. Internet mapping technologies: a tutorial. Perm: Perm State National Research University, 2020. 132 p. (in Russian).
  2. Babanin V.F., Trukhin V.I., Karpachevsky L.O., Ivanov A.V., Morozov V.V. Soil magnetism. Yaroslavl: Yaroslavl State. University, 1995. 223 p. (in Russian).
  3. Chashchin A.N. Iron oxides and heavy metals in the soils of Chusovoy (Middle Cis-Urals) polluted by metallurgical production: dissertation … A candidate of biological sciences: 03.02.13. Ufa, 2010. 156 p. (in Russian).
  4. Da Silva Júnior J.F., Siqueira D.S., Teixeira D.B., Panosso A.R., Júnior J.M., Pereira G.T. Multivariate split moving windows and magnetic susceptibility for locating soil boundaries of São Paulo, Brazil. Geoderma Regional. 2021. Vol. 26. P. e00418. DOI: 10.1016/j.geodrs.2021.e00418.
  5. Gladysheva M.N., Ivanov A.V., Stroganova M.N. Identification of areas of technogenically polluted soils of Moscow by their magnetic susceptibility. Soil science. 2007. No. 2. P. 235–242 (in Russian).
  6. Kirana K.H., Apriliawardani J., Ariza D., Fitriani D., Agustine E., Bijaksana S., Fajar S.J., Nugraha M.G. Frequency Dependent Magnetic Susceptibility in Topsoil of Bandung City, Indonesia. IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2021. Vol. 873. No. 1. P. 012016. DOI: 10.1088/1755-1315/873/1/012016.
  7. Myslova T.N., Kutsaeva O.A., Podlesny A.A. Comparison of the effectiveness of GIS-based interpolation methods for estimating the spatial distribution of humus in soil. Vestnik BSHA. 2017. No. 4. P. 146–152 (in Russian).
  8. Scholger P., Hanesch M., Scholger R. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Journal Environ. Geol. 2002. No. 42. P. 857–870. DOI: 10.1007/s12665-011-1248-9.
  9. Vasil’ev A.A., Lobanova E.S. Magnetic and geochemical assessment of the soil cover of the urbanized territories of the Cis-Urals on the example of the city of Perm. Perm: FGBOU VPO “Perm State Agricultural Academy”, 2015. 243 p. (in Russian).
  10. Vodyanitsky Yu.N., Shoba S.A. Magnetic susceptibility as an indicator of urban soil pollution by heavy metals (literature review). Bulletin of Moscow University. Episode 17: Soil Science. 2015. No. 1. P. 13–20 (in Russian)
  11. Wang B., Zhang X., Zhao Y., Zhang M., Jia J. Spatial and temporal distribution of pollution based on magnetic analysis of soil and atmospheric dustfall in Baiyin city, northwestern China. International Journal of Environmental Research and Public Health. 2021. Vol. 18. No. 4. P. 1681. DOI: 10.3390/ijerph18041681.

For citation: Vasil’ev A.A., Chashchin A.N. Mapping of the magnetic susceptibility of soils of the city of Chaykovskiy. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 800–812. DOI: 10.35595/2414-9179-2022-2-28-800-812 (in Russian)