Dynamic mapping of disturbed lands using remote sensing data

DOI: 10.35595/2414-9179-2022-2-28-785-799

View or download the article (Rus)

About the Authors

Olga V. Artemeva

Saint Petersburg State University, Institute of Earth Sciences,
Universitetskaya nab., 7–9, 199034, St-Petersburg, Russia;
E-mail: ovartemyeva@mail.ru

Aleksandr S. Bakulev

Saint Petersburg State University, Institute of Earth Sciences,
Universitetskaya nab., 7–9, 199034, St-Petersburg, Russia;
E-mail: aleksandrbakulev@yandex.ru

Natalya A. Pozdnyakova

Saint Petersburg State University, Institute of Earth Sciences,
Universitetskaya nab., 7–9, 199034, St-Petersburg, Russia;
E-mail: qlnat@mail.ru

Sergey V. Tyurin

Saint Petersburg State University, Institute of Earth Sciences,
Universitetskaya nab., 7–9, 199034, St-Petersburg, Russia;
E-mail: s.tjurin@spbu.ru

Abstract

Due to the increase in the areas of disturbed lands, the relevance of developing methods and methods for obtaining and analyzing spatial data in order to make decisions on rational nature management is increasing every year. Monitoring of natural and anthropogenic systems is largely related to the collection, analysis and visualization of dynamic processes, so the technologies for compiling of dynamic maps are at the peak of relevance. A number of factors necessitate the using of dynamic geoimages. Firstly, these images are an inseparable combination of spatial-temporal links on the certain areas. Secondly, it is the possibility of a full-fledged analysis of spatial changes taking into account time. Thirdly, it is the forecasting of natural and socio-economic factors and phenomena. In addition, dynamic mapping opens up opportunities for multimedia data visualization, which increases the observer’s perception of geoimages by several times with the focus on specific objects. Remote sensing data is one of the main sources for compiling and updating thematic dynamic maps. This article demonstrates the development of the method for creating working layers used in geographic information systems (GIS) for compiling dynamic maps using remote sensing data. The authors note a distinctive feature of the methodology: it is aimed at a wide range of users who do not fully have the skills and abilities to work with remote sensing data. These are managers of any level, whose direct work is not related to the compiling of geo-images, but whose competence is to make managerial decisions. Another advantage of the described methods is its implementation in an open source GIS (QGIS), as well as its application not only for single images, but also for a mosaic image. The article presents a description of the entire path from image processing to the creation of visual images. Disturbed lands of the Zabaykalsky Krai of the Russian Federation were chosen as a special example of working polygons. These territories have a large number of environmental problems, causing an increase in the areas of disturbed lands: open pits, an increase in the number of mining and processing factories, degradation of agricultural and forest lands due to anthropogenic activities and erosion processes, active seismic processes, mudflows and avalanche hazard.

Keywords

remote sensing data, GIS, dynamic maps, maps of disturbed lands, disturbed land monitoring

References

  1. Apkin R.N., Minakova E.A. Environmental monitoring. Kazan: KSEU, 2013. 255 p. (in Russian).
  2. Artemeva O.V., Bakulev A.S., Danilova O.I. Experience in creating maps of urban development dynamics based on remote sensing data. Collection of scientific works “Modern problems of geography”. 2020. Vol. 5. P. 7–12 (in Russian).
  3. Artemeva O., Zareie S., Elhaei Y., Pozdnyakova N., Vasilev N. Using remote sensing data to create maps of vegetation and relief for natural resource management of a large administrative region. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019. Vol. XLII-4/W18. P. 103–109.
  4. Berlyant A.M. Geoinformation mapping. Moscow: Russian Academy of Natural Sciences, 1997. P. 16–18 (in Russian).
  5. Bhandari A., Kumar R., Singh G. Feature Extraction using Normalized Difference Vegetation Index (NDVI): a Case Study of Jabalpur City; Elsevier Ltd. Selection and peer-review under responsibility of the Department of Computer Science & Engineering, National Institute of Technology Rourkela. 2012. DOI: 10.1016/j.protcy.2012.10.074).
  6. DiBiase D., MacEachren A., Krygier J., Reeves C. Animation and the Role of Map Design in Scientific Visualization. Cartography and Geographic Information Science. 1992. Vol. 19. P. 201–214.
  7. Harrower M., Fabrikant S.I. The role of map animation for geographic visualization. Geographic Visualization: Concepts, Tools and Applications. 2008. P. 49–65.
  8. Interpretation of aerospace images: textbook, [electronic edition of network distribution] 2nd ed., revised and supplemented. Eds. E.A. Baldina, I.A. Labutina. Moscow: “KDU”, “Dobrosvet”, 2021. 269 p. URL: https://bookonlime.ru/node/6333/ DOI: 10.31453/kdu.ru.978-5-7913-1163-4-2021-269 (in Russian).
  9. Labutina I.A., Baldina E.A. Using remote sensing data to monitor protected area ecosystems. Moscow: WWF Russia, 2011. 88 p. (in Russian).
  10. Lillesand T., Kiefer R., Chipman J. Remote sensing and image interpretation. 7th Ed. 2015. 736 p. ISBN: 987-1-118-34328-9.
  11. Marchukov V.S. Dynamic mapping technology based on remote sensing data. Collection of articles on the results of the international scientific and technical conference dedicated to the 230th anniversary of the founding of MIIGAiK. Moscow: Publishing house MIIGAiK, 2009. P. 5–9 (in Russian).
  12. Peterson M. Spatial Visualization through Cartographic Animation: Theory and Practice. Proceedings of Geographic Information Systems. 1994. P. 250–258.
  13. Rouse J., Haas R., Shel J., Deering D. Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS. Symposium, NASA SP-351. 1973. I. P. 309–317.
  14. Schovengerdt R. Remote sensing. Models and methods of image processing. Moscow: Technosphere, 2010. 556 p. ISBN: 978-5-94836-244-1. FB 2 10-52/11.
  15. Zenkov I.V., Nefedov B.N., Kiryushin E.V., Zayats V.V. The results of remote monitoring of the ecological state of disturbed lands by the “Korkinsky” open-pit mine. Coal. 2018. No. 9. P. 99–101 (in Russian).

For citation: Artemeva O.V., Bakulev A.S., Pozdnyakova N.A., Tyurin S.V. Dynamic mapping of disturbed lands using remote sensing data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 785–799. DOI: 10.35595/2414-9179-2022-2-28-785-799 (in Russian)