Hydrometeorological hazards during the winter periods in the Northern Caspian and dynamics under the influence of climatic changes

DOI: 10.35595/2414-9179-2022-2-28-709-718

View or download the article (Rus)

About the Authors

Anastasiia A. Magaeva

Southern Scientific Centre of Russian Academy of Sciences,
pr. Chekhova, 41, 344006, Rostov-on-Don, Russia;
E-mail: a.magaeva@mail.ru

Natalia A. Yaitskaya

Subtropical Scientific Centre of the Russian Academy of Sciences,
Yana Fabritsiusa str., 2/28, 354002, Sochi, Russia;

Southern Scientific Centre of Russian Academy of Sciences,
pr. Chekhova, 41, 344006, Rostov-on-Don, Russia;

E-mail: yaitskayan@gmail.com

Abstract

Hydrometeorological hazards of the Northern Caspian during the winter periods 1950–2020—due to climatic changes were investigated. Hydrometeorological hazards for the period 1950–2020 are considered: severe winter periods, early ice freeze-up, storm waves, wind surge, as well as cumulative hydrometeorological hazards—combinations of storm waves and surge. Geographic information system (GIS) “Ice regime of the southern seas of Russia” is the information basis for the study of the ice regime of the Caspian Sea.

Storm activity in the Caspian Sea were reconstructed using SWAN spectral wave model. Based on the cumulative freezing-degree days winters were divided by severity—mild, moderate and severe. During the study period, moderate types of winters prevail (59.4 %), and the number of severe and mild winters is the same and amounts to 14 pcs. (20.3 %) of each type. Due to climate change, the number of mild winters is increasing, and the number of severe ones is decreasing. Since 1985, 3 severe winters (2002/03, 2007/08, 2011/12) have been recorded. As a result, the ice cover area decreased by ∼7–10 %, and the duration of the ice season at the observation point Peshnoy was reduced by 5 days. 157 situations of combinations of storm surge and storm waves are identified: 140 are cases of potential situations of cumulative phenomena of a combination of storm and surge phenomena with a speed of 15 m/s or more of winds of effective directions. The largest number of cases of cumulative dangerous hydrometeorological hazards with a wind speed of more than 15 m/s is observed in March. After the 2000s there was an increase in the number of cases and duration of dangerous hydrometeorological hazards in November and March. A direct relationship between the number of cases of cumulative dangerous hydrometeorological hazards and the severity of winters has not been found.

Keywords

the Northern Caspian, hydrometeorological hazards, storm surge, ice cover

References

  1. Akpınar A., Bingölbalia B., Van Vledder G.P. Wind and wave characteristics in the Black Sea based on the SWAN wave model forced with the CFSR winds. Ocean Engineering, 2016. Vol. 126. P. 276–298. DOI: 10.1016/j.oceaneng.2016.09.026.
  2. Akpınar A., Van Vledder G.P., Kömürcü M.I ̇., Özger M. Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Continental Shelf Research, 2012. Vol. 50. P. 80–99. DOI: 10.1016/j.csr.2012.09.012
  3. Bukharitsin P.I. Comparative characterisitcs of long-term variability of the ice cover in the north part of the Caspian and Azov seas. Vestnik of Astrakhan State Technical University. 2008. Vol. 3. P. 207–213 (in Russian).
  4. Bukharitsin P.I., Ogorodov S.A., Arkhipov A.A. Impact of ice bodies on the seabed of the Northern Caspian Sea under sea level fluctuation and ice coverage changes. Vestnik Moskovskogo universiteta. Seriya 5: Geografiya. 2015. Vol. 2. P. 101–108 (in Russian).
  5. Dumanskaya I.O. Ice conditions of the seas of the European part of Russia. Moscow: IG SOTSIN, 2014. 608 p. (in Russian).
  6. Dumanskaya I.O. Typical conditions on the main navigable routes of the seas of the European part of Russia for winters of varying severity. Proceedings of Hydrometcentre of Russia. 2013. No. 350. P. 142–166 (in Russian).
  7. Fedorenko A.V. The study of seasonal and intra-annual variations of the main ice parameters on the southern seas (the Sea of Azov and the Caspian Sea). Proceedings of the GOIN. 2011. Vol. 215. P. 15–25 (in Russian).
  8. Matishov G.G., Chikin A.L., Dashkevich L.V., Kulygin V.V., Chikina L.G. Ice regime of the Sea of Azov and the climate at the beginning of the XXI century. Doklady Earth Sciences. 2014. Vol. 457. No. 5. P. 603–607 (in Russian).
  9. Matishov G.G., Matishov D.G., Berdnikov S.V., Sorokina V.V., Levitus S., Smolyar I.V Secular climate fluctuations in the Sea of Azov region (based on thermohaline data over 120 years). Doklady Earth Sciences. 2008. Vol. 422. No. 1. P. 106–109 (in Russian).
  10. Ogorodov S.A., Magaeva A.A., Maznev S.V., Yaitskaya N.A., Vernyayev S., Sigitov A., Kadranov Y. Ice Features of the Northern Caspian under sea level fluctuations and ice coverage variations. Geography, Environment, Sustainability. 2020. Vol. 13. No. 3. P. 129–138. DOI: 10.24057/2071-9388-2020-77.
  11. Ogorodov S.A. The Role of Sea Ice in Coastal Dynamics. Moscow: Moscow University Press, 2011. 171 p. (in Russian).
  12. Sigitov A., Kadranov Y., Vernyayev S. Analysis of Stamukhi Distribution in the Caspian Sea. Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC, 2019. P. 1–14.
  13. Van Vledder G.P., Akpınar A. Wave model predictions in the Black Sea: Sensitivity to wind fields. Applied Ocean Research. 2015. Vol. 53. P. 161–178.
  14. Yaitskaya N. The Wave Climate of the Sea of Azov. Water. 2022. Vol. 14 (4). P. 555. DOI: 10.3390/w14040555.
  15. Yaitskaya N.A., Magaeva A.A. Ice regime of the Northern Caspian. Vestnik Moskovskogo universiteta. Seriya 5: Geografiya. 2020. Vol. 6. P. 63–72 (in Russian).
  16. Zijlema M., Van der Westhuyse A.J. On convergence behavior and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra. Coastal Engineering. 2005. Vol. 52. No. 3. P. 237–256. DOI: 10.1016/j.coastaleng.2004.12.006.

For citation: Magaeva A.A., Yaitskaya N.A. Hydrometeorological hazards during the winter periods in the Northern Caspian and dynamics under the influence of climatic changes. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 709–718. DOI: 10.35595/2414-9179-2022-2-28-709-718 (in Russian)