Possibilities of GIS technologies for studying hydrological characteristics of a water body and environmental parameters of its catchment area

DOI: 10.35595/2414-9179-2022-2-28-691-708

View or download the article (Rus)

About the Authors

Evgenii A. Goncharov

Volga State University of Technology,
pl. Lenina, 3, 424000, Yoshkar-Ola, Russia;
E-mail: GoncharovEA@volgatech.net

Aleksandr N. Fadeev

Volga State University of Technology,
pl. Lenina, 3, 424000, Yoshkar-Ola, Russia;
E-mail: FadeevAN@volgatech.net

Aleksey A. Ivanov

Volga State University of Technology,
pl. Lenina, 3, 424000, Yoshkar-Ola, Russia;
E-mail: IvanovAA@volgatech.net

Marina Yu. Timofeeva

Volga State University of Technology,
pl. Lenina, 3, 424000, Yoshkar-Ola, Russia;
E-mail: Marinellat@mail.ru

Abstract

This work summarizes literary and cartographic material that characterizes the Morskoy Glaz Lake and its catchment area. The levels of aquifers and the catchment area of the lake were determined along with development of digital models of the terrain and relief of the lake basin, which were developed on the basis of multi-temporal microdrone photo-shooting with usage of geodetic referencing of basepoints using the tools of Agisoft Metashape and GIS “Panorama”. The catchment area of the lake doesn’t exceed more than 1.3 km², while the main supply of water nourishment of the lake forms as a surface runoff and groundwater flow on an area of about 0.6 km². This area contains 45 residential building connected by local sewerage and many private water wells. The lands of rural settlements and agricultural lands make up 26 % and 64 % of main catchment area, respectively. With the usage of photographic materials of the lake provided by users of social medias and usage of digital terrain models of Agisoft Metashape, a reconstruction of the dynamics of the lake water levels for 2013–2022 was carried out, which made it possible to calculate volumes of lake waters for specific calendar dates along with possibility of estimation of the rate of change of water volumes in the lake, which was achieved through the usage of tools of GIS “Panorama”. Long-term level of water’s edge of the lake is 121.5 meters, the total volume of the lake is 53,185 m³. Since 2014, there have been significant fluctuations in the level of the water’s edge in the lake. Meanwhile, the rate of water volume change varied from 3.9 to −3.6 dm³ per second. The reason for the negative water balance in March 2022 is formation of a ponor at the end of the winter of 2014, which subsequent expansion along with periodic overlapping by screes and microlandslides have led to complete disappearance of the lake. The proposed algorithm based on the usage of the Citizen science technologies (collection of amateur photo- and video- data), combined with usage of GIS-tools can be used for providing monitoring for water bodies.

Keywords

lake, karst, photogrammetry, digital terrain model, geographic information system, environmental monitoring

References

  1. Anokhin V.M., Dudakova D.S., Dudakov M.O. Geomorphology and typing of the Lake Ladoga shores with the use of dron. Geomorphology RAS. 2019. No. 1. P. 25–37. DOI: 10.31857/S0435-42812019125-37 (in Russian).
  2. Bandini F., Jakobsen J., Olesen D., Reyna-Gutierrez J.A., Bauer-Gottwein P. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles. Journal of Hydrology. 2017. Vol. 548. P. 237–250. DOI: 10.1016/j.jhydrol.2017.02.038.
  3. Belov K.V., Ignatov P.A., Goryunov E.Y. Regime of karst and glacial lakes at the carboniferous plateau of Tikhvin Ridge in the Northwest of the Russian platform. Geoekologiya. Inzheneraya Geologiya, Gidrogeologiya, Geokriologiya. 2019. No. 2. P. 21–29. DOI: 10.31857/S0869-78092019221-29 (in Russian).
  4. Chikishev A.G. Karst of the Russian Plain. Moscow: Nauka, 1978. 190 p. (in Russian).
  5. Duan P., Wang M., Lei Ya., Li J. Research on Estimating Water Storage of Small Lake Based on Unmanned Aerial Vehicle 3D Model. Water resources. 2021. Vol. 48. No. 5 P. 690–700. DOI: 10.1134/S0097807821050109.
  6. Russkikh A.V., Ivanov A.D. Caves and karst lakes of the Volga-Vyatka region. Kirov, 1992. 87 p. (in Russian).
  7. Stupishin A.V. Plain karst and patterns of its development on the example of the Middle Volga region. Kazan: Kazan University, 1967. 292 p. (in Russian).
  8. Timofeeva M.Yu., Ilyin A. Limnological studies of Morskoy glaz Lake. Student science and XXI century. Student science in the 21st century. 2009. No. 6. P. 143–146 (in Russian).
  9. Vasilyeva D.P. Landscape Geography of the Mari ASSR. Yoshkar-Ola: Mari book publishing house, 1979. 136 p. (in Russian).
  10. Yasinskii S.V., Kashutina E.A., Sidorova M.V., Narykov A.N. Anthropogenic Load and the Effect of Drainage Area on the Diffuse Runoff of Nutrients into a Large Water Body: Case Study of the Cheboksary Reservoir. Water Resources, 2020. Vol. 47. P. 810–827. DOI: 10.1134/S009780782005022X.
  11. Zhuravlev A.I., Fadeev A.N. Obtaining and processing of morphometric characteristics of Morskoy glaz Lake. Engineering personnel—the future of the innovative economy of Russia. Yoshkar-Ola: Volga State University of Technology, 2015. Vol. 5. P. 215–217 (in Russian).
  12. Zhuravlev A.I. The creation of a DSM using the method of photographing the position of the point depth. Modern scientific researches and innovations. 2016. No. 7. Web resource: https://web.snauka.ru/issues/2016/07/69267 (accessed 01.04.2022) (in Russian).

For citation: Goncharov E.A., Fadeev A.N., Ivanov A.A., Timofeeva M.Yu. Possibilities of GIS technologies for studying hydrological characteristics of a water body and environmental parameters of its catchment area. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 691–708. DOI: 10.35595/2414-9179-2022-2-28-691-708 (in Russian)