GIS mapping excess mortality in Europe in 2020–2021 on the background of the coronavirus pandemic

DOI: 10.35595/2414-9179-2022-2-28-332-346

View or download the article (Rus)

About the Authors

Anton P. Mushtaykin

National Research Ogarev Mordovia State University,
Bolshevistskaya str., 68, 430005, Saransk, Republic of Mordovia, Russia;
E-mail: anton169@mail.ru

Sergey A. Teslenok

National Research Ogarev Mordovia State University,
Bolshevistskaya str., 68, 430005, Saransk, Republic of Mordovia, Russia;
E-mail: teslserg@mail.ru

Irina A. Semina

National Research Ogarev Mordovia State University,
Bolshevistskaya str., 68, 430005, Saransk, Republic of Mordovia, Russia;
E-mail: isemina@mail.ru

Samat K. Ilkaev

National Research Ogarev Mordovia State University,
Bolshevistskaya str., 68, 430005, Saransk, Republic of Mordovia, Russia;
E-mail: ilkaev97@yandex.ru

Abstract

The first officially recorded case of severe acute respiratory infection caused by SARS-CoV-2 coronavirus (2019-nCoV) was reported in the People’s Republic of China in late 2019. Since then, the virus has spread rapidly across the planet. On 30 January 2020. The World Health Organization (WHO) designated the outbreak as an emergency and as early as 30 March 2020 it declared the disease a pandemic, named COVID-19. At the beginning of April 2022 there were more than 500 million cases and 6 million deaths according to this organization. The latter figure however immediately raised questions—among doctors and scientists alike—as it has not yet been possible to develop a uniform approach to its recording around the world. Therefore, in this paper, the choice of the excess mortality indicator is justified in its mapping presentation, whose main advantage is that it can be used to represent both the losses from COVID-19 itself and the consequences of the increased burden on public health systems. The visualization of such data using modern geo-information technology is relevant both at present, against the background of the ongoing COVID-19 pandemic, and in the future, when dealing with its consequences. The main specificity of the territory under study—Europe (including both countries wholly located in this part of the world and parts of it—including Kazakhstan, Russia and Turkey, as well as Azerbaijan, Armenia, Georgia and Cyprus, geographically located in Asia)—is sufficient similarity of basic demographic indicators of countries with different approaches to pandemic control applied in each of them. This enables us to use maps to highlight whether they have been successful in this area in the most straightforward way. The geo-referenced mapping materials can be used for further, more in-depth analysis and visualization of coronavirus data using cartographic research at the level of individual states and their smaller jurisdictions.

Keywords

mapping, GIS-technologies, medical geography, excess mortality, COVID-19

References

  1. Avdashkina I.F., Tupitsyna N.B. Medico-geographical mapping by the example of the Mogilev region. GIS-technologies in the Earth sciences: materials of the competition of GIS-projects of students and postgraduate students of Belarusian universities, held during the celebration of the International. GIS Day 2013. Minsk, November 20, 2013. Minsk: BSU, 2013. P. 81–83 (in Russian).
  2. Balanova Y.A., Kontsevaya A.V., Lukyanov M.M., Kljashtornyi V.G., Kuznetsov A.S., Kalinina A.M., Boitsov S.A. Excess mortality in Moscow in winter and its economic significance in 2007–2014. Russian Journal of Cardiology. 2015. No. 11. P. 46–51 (in Russian).
  3. Berlyant A.M. Cartographic research method. Moscow: Moscow University Press, 1978. 257 p. (in Russian).
  4. Cherepanova E.S., Kiseleva E.S., Perminov S.I., Tarasov A.V. Mathematical-cartographic modeling in socioeconomic mapping: peculiarities of data visualization. Geographical Bulletin, 2017. No. 2 (41). P. 137–147. DOI: 10.17072/2079-7877-2017-2-137-147 (in Russian).
  5. Chistobaev A.I., Dmitriev V.V., Semenova Z.A., Ogurtsov A.N., Grudtcyn N.A. Integral assessment and cartographic modeling of public health as an indicator of life guality. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. Vol. 26. Part 3. P. 91–104. DOI: 10.35595/2414-9179-2020-3-26-91-104 (in Russian).
  6. Glotov A.A. Medical GIS—the basis of the integral assessment of the region’s well-being. Geomatics, 2013. No. 3. P. 45–49 (in Russian).
  7. Handbook of Medical Geography. St. Petersburg: Hippocrates, 1993. 352 p. (in Russian).
  8. Holdstock D. Strategic GIS planning and management in local government. Boca Raton, FL: CRC Press, 2017. 258 p.
  9. Huynen M.M., Martens P., Schram D., Weijenberg M.P., Kunst A.E. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect, 2001. No. 109.
  10. Ignatiev E.I. Nodal issues of medical-geographical mapping. Principles and methods of medical-geographical mapping. Irkutsk: Institute of Geography of Siberia and the Far East, 1968. P. 5–28 (in Russian).
  11. Kent A.J. Strategic Mapping and Counter-Mapping COVID-19: From Crisis to Cartocracy. The Cartographic Journal. The World of Mapping, 2021. Vol. 57. I. 3.
  12. Komissarova T.S., Morozova O.N. Visualization of geographical space by cartographic method. Vestnik (Herald) of St. Petersburg University. Series 7: Geology. Geography, 2015. No. 3. P. 144–152 (in Russian).
  13. Kurolap S.A. Medical geography: modern aspects. Soros Educational Journal. 2000. Vol. 6. No. 6. P. 52–58 (in Russian).
  14. Levina Y.S., Teslenok S.A. Geoinformation mapping of the spread of infectious diseases in the territory of the administrative district. Geoinformation mapping in the regions of Russia: Proceedings of the VIII All-Russian Scientific and Practical Conference. (Voronezh, December 20, 2016). Voronezh: Scientific book, 2016. P. 58–62 (in Russian).
  15. Medical Geography and Health: A Collection of Scientific Works. Leningrad: Nauka, 1989. 218 p. (in Russian).
  16. Mochnik P-J, Raposo P., Feringa W., Kraak M-J., Kobben B. Epidemics and pandemics in maps—the case of COVID-19. Journal of Maps. 2020. Vol. 16, I. 1.
  17. Mooney P., Juhanz L. Mapping COVID-19: How web-based maps contribute to the infodemic. Dialogues in Human Geography. 2020. Vol. 10. I. 2.
  18. Prokhorov B.B. Principles and methods of compiling maps of complex medical and geographical assessment of territories. Principles and Methods of Medical and Geographic Mapping. Irkutsk: Institute of Geography of Siberia and the Far East, 1968. P. 154–184. (in Russian).
  19. Reich E.L. Modeling in Medical Geography. Moscow: Nauka, 1984. 157 p. (in Russian).
  20. Shaykunova R.B., Teslenok S.A. Geoinformation and cartographic analysis of the availability of medical institutions in the territory of St. Petersburg. Geodesy, Cartography, Geoinformatics and Cadastres. From idea to implementation. Proceedings of the II International Scientific and Practical Conf. St. Petersburg, 08–10 November, 2017, St. Petersburg, 2017. P. 315–322 (in Russian).
  21. Teslenok K.S. Creation of the geoinformation project and its use for the development of economic systems. Geoinformation mapping in the regions of Russia: materials of the VII All-Russian scientific-practical conference. Voronezh, 10–12 December, 2015. Voronezh: Scientificbook, 2015. P. 134–138 (in Russian).
  22. Teslenok K.S., Levina Y.S., Teslenok S.A. Geoinformation mapping of territorial distribution of acute intestinal infections in order to ensure the safety of life. Ecological safety and environmental protection in the regions of Russia: theory and practice: materials of the II All-Russian scientific and practical conference. Volgograd, 17–18 November. 2016. Volgograd: Volgograd State University Press, 2016. P. 245–251 (in Russian).
  23. Teslenok S.A., Teslenok K.S. On the experience of geoinformation mapping and geoinformation modeling. XI Zyryanov readings: materials of the All-Russian scientific-practical conference. Kurgan, 5–6 December 2013. Kurgan: Publishing house of Kurgan State University, 2013. P. 195–197 (in Russian).
  24. Woolf H., Chapman D.A., Sabo R.T., Zimmerman E.B. Excess Deaths From COVID-19 and Other Causes in the US. March 1, 2020, to January 2, 2021. JAMA, April 2021.

For citation: Mushtaykin A.P., Teslenok S.A., Semina I.A., Ilkaev S.K. GIS mapping excess mortality in Europe in 2020–2021 on the background of the coronavirus pandemic. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 332–346. DOI: 10.35595/2414-9179-2022-2-28-332-346 (in Russian)