Dynamics of individual glaciers of the Munku-Sardyk massif (Eastern Sayan) and the Karlyktag range (Eastern Tien Shan)


View or download the article (Rus)

About the Authors

Aleksandr D. Kitov

V.B. Sochava Institute of Geography SB RAS,
664033, Irkutsk, Ulan-Batorskay st., 1, Russia,
E-mail: kitov@irigs.irk.ru

Viktor M. Plyusnin

V.B. Sochava Institute of Geography SB RAS,
664033, Irkutsk, Ulan-Batorskay st., 1, Russia,
E-mail: plyusnin@irigs.irk.ru


For more than ten years, the local features of the glaciation of individual mountain ranges of the inland part of Asia have been considered on the example of a transboundary transect from the latitudes of the middle taiga of the Baikal region, capturing the Mongolian Altai, to the Himalayas and are presented in the materials of the conferences “InterCarto. InterGIS”. The glaciers of the Eastern Tien Shan are interesting as part of this transect, located in the desert and semi-desert zones. The literature mainly considers the dynamics of glaciers of the central part of the Tien Shan, in the Urumqi region. In the northern part of the transect, the glaciers in the Eastern Sayan (nival-glacial objects of the Munku-Sardyk range) are the most studied. The dynamics of these glaciers is represented for more than 100 years. This paper considers changes in the glacier at the main peak of the Munku-Sardyk mountain range (Peretolchina glacier) and the little-studied glacier at the highest peak of the Karlyktag ridge of a similar northern exposure. Assessing the entire transect, it can be noted that the glaciers of the northern part of the transect (starting from the Kodar Range) are characterized by a significant decrease in thickness compared to their area changes and an increase in the rate of armoring by surface moraines. Moraine armoring of the lower part of the Karlyktag glacier also occurs, but not as significantly as that of the Peretolchina glacier. A comparison of the dynamics of the Karlyktag glacier and the Peretolchina glacier from Landsat remote sensing data shows that glaciers are shrinking to varying degrees. The open part of the Peretolchina glacier from the finite moraine of the Fernau stage decreased both in area and length by about half. The Karlyktag Glacier has decreased in length by about 25 %. It was significantly reduced in length in the early 1970s to 100 m/year. The decrease in area averaged at a rate of 0.03 km²/year. Over the past 20 years, the Peretolchina glacier has been shrinking in area at a rate of 0.005 km²/year, and for the entire observation period since 1900—0.004 km²/year. In terms of length over the same period, the glacier is shrinking at a rate of 5 m/year. Anomalous changes were revealed in the glaciers in question in 2013 and 2021. Similar processes were noted in the southern part of the transect (Himalayas) after the accumulation of a snow-ice mass, a catastrophic convergence of glaciers occurred in 2014 (in the area of Khumbu and Langtang).


Eastern Sayan, Eastern Tien Shan, glacier, transect, remote research


  1. Ganyushkin D.A., Otgonbayar D., Chistyakov K.V., Kunaeva E.P., Volkov I.V. Recent glacierization of the Tsambagarav ridge (North-Western Mongolia) and its changes since the Little Ice Age maximum. Journal Ice and Snow, 2016. V. 56. No. 4. P. 437–452 (in Russian). DOI: 10.15356/2076-6734-2016-4-437-452.
  2. IPCC. Climate change 2007. The physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Geneva: Published by IPCC, 2007. 996 p.
  3. IPCC. Climate Change 2021: The Physical Science Basis, the Working Group I contribution to the Sixth Assessment Report on 6 August 2021 during the 14th Session of Working Group I and 54th Session of the IPCC. Geneva: Published by IPCC, 2021. 2337 p.
  4. Kitov A.D., Plyusnin V.M. Features local glaciological phenomena in mountain landscapes (on example Baikal-Urumchi transect). Sustainable development of territories: GIS theory and practical experience. Materials of the international conference. InterCarto, InterGIS-14, Saratov–Urumqi, June 24–26, 2008, V. 1. Saratov, 2008. P. 130–137 (in Russian).
  5. Kitov A.D., Kovalenko S.N., Plyusnin V.M. The results of 100-year-long observations of the glacial geosystem dynamics in the Munku-Sardyk massif. Geography and natural resources, 2009. V. 30. No. 3. P. 272–278. DOI: 10.1016/j.gnr.2009.09.012.
  6. Kitov A.D., Plyusnin V.M., Ivanov E.N., Batuev D.A., Kovalenko S.N. The internet presentation of databases of glaciers of the south of eastern Siberia. Proceedings of the International conference InterCarto. InterGIS. 2017. V. 23 No. 2. P. 228–242 (in Russian). DOI: 10.24057/2414-9179-2017-2-23-228-242.
  7. Kitov A.D., Pluysnin V.M., Bilichenko I.N. Change of glaciers in the Himalayas and Southern Siberia according to Landsat. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2019. V. 25. Part 2. P. 146–160 (in Russian). DOI: 10.35595/2414-9179-2019-2-25-146-160.
  8. Kotlyakov V.M., Chernova L.P., Muravyev A.Ya., Khromova T.E., Zverkova N.M. Change of mountain glaciers in the Northern and Southern hemispheres over the past 160 years. Journal Ice and Snow, 2017. V. 57. No. 4. P. 453–467 (in Russian). DOI: 10.15356/2076-6734-2017-4-453-467.
  9. Kutuzov S. The retreat of Tien Shan glaciers (Central Asia) since the “Little Ice Age” obtained from moraine positions, aerial photographs and satellite images. PAGES 2nd Open Science Meeting. Beijing, China. 10–12 August 2005. P. 138.
  10. Osipov E.Y., Osipova O.P., Klevtsov E.V. Inventory of glaciers in the Eastern Sayan on the basis of space surveys. Journal Ice and Snow, 2017. V. 57. No. 4. P. 483–497 (in Russian). DOI: 10.15356/2076- 6734-2017-4-483-497.
  11. Peretolchin S.P. Glaciers of the Munku-Sardyk ridge. Izv. Tomsk.techn. in-ta. V. 9. Tomsk: Typolithography Sib. t-va pechatnogo dela, 1908. 60 p. (in Russian).
  12. Solomina O. Retreat of mountain glaciers of northern Eurasia since the Little Ice Age maximum. Annals of Glaciology, 2000. V. 31. P. 26–30.
  13. Su Z., Shi Y. Response of monsoonal temperature glaciers to global warming since the Little Ice Age. Quaternary International, 2002. V. 97–98. P. 123–131.
  14. USSR Glacier Inventory. V. 16. Iss. 1. Part. 3–5. Iss. 2. Part. 1. Leningrad: Hydrometeoizdat, 1973. 64 p. (in Russian).
  15. WGMS 1991. Glacier Mass Balance Bulletin No. 1 (1988–1989). Haeberli W., Herren E. (eds.), IAHS (ICSI)–UNEP–UNESCO. Zurich, Switzerland: World Glacier Monitoring Service, 1991. 70 p.
  16. WGMS 2013. Glacier Mass Balance Bulletin No. 12 (2010–2011). Zemp M., Nussbaumer S.U., Naegeli K., Gärtner-Roer I., Paul F., Hoelzle M., Haeberli W. (eds.), ICSU (WDS), IUGG (IACS), UNEP, UNESCO, WMO. Zurich, Switzerland: World Glacier Monitoring Service, 2013. 106 p.
  17. WGMS 2015. Global Glacier Change Bulletin No. 1 (2012–2013). Zemp M., Gärtner-Roer I., Nussbaumer S.U., Hüsler F., Machguth H., Mölg N., Paul F., Hoelzle M. (eds.), ICSU (WDS), IUGG (IACS), UNEP, UNESCO, WMO. Zurich, Switzerland: World Glacier Monitoring Service, 2015. 230 p. DOI: 10.5904/wgms-fog-2015-11.
  18. WGMS 2017. Global Glacier Change Bulletin No. 2 (2014–2015). Zemp M., Nussbaumer S.U., Gärtner-Roer I., Huber J., Machguth H., Paul F., Hoelzle M. (eds.), ICSU (WDS), IUGG (IACS), UNEP, UNESCO, WMO. Zurich, Switzerland: World Glacier Monitoring Service, 2017. 244 p. DOI: 10.5904/wgms-fog-2017-10.
  19. WGMS 2020. Global Glacier Change Bulletin No. 3 (2016–2017). Zemp M., Gärtner-Roer I., Nussbaumer S.U., Bannwart J., Rastner P., Paul F., Hoelzle M. (eds.), ISC (WDS), IUGG (IACS), UNEP, UNESCO, WMO. Zurich, Switzerland: World Glacier Monitoring Service, 2020. 274 p. DOI: 10.5904/wgms-fog-2019-12.
  20. WGMS 2021. Global Glacier Change Bulletin No. 4 (2018–2019). Zemp M., Nussbaumer S.U., Gärtner-Roer I., Bannwart J., Paul F., Hoelzle M. (eds.), ISC (WDS), IUGG (IACS), UNEP, UNESCO, WMO. Zurich, Switzerland: World Glacier Monitoring Service, 2021. 278 p. DOI: 10.5904/wgms-fog-2021-05.

For citation: Kitov A.D., Plyusnin V.M. Dynamics of individual glaciers of the Munku-Sardyk massif (Eastern Sayan) and the Karlyktag range (Eastern Tien Shan) InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 589–602. DOI: 10.35595/2414-9179-2022-1-28-589-602 (In Russian)