Improving global Geoid by GPS and leveling data over the Fergana valley territory

DOI: 10.35595/2414-9179-2022-1-28-568-579

View or download the article (Rus)

About the Authors

Dilbarkhon Sh. Fazilova

Ulugh Beg Astronomical Institute of Uzbek Academy of Sciences,
Astronomicheskaya str., 33, 100052, Tashkent, Republic of Uzbekistan;

National university of Uzbekistan named Mirzo Ulugbek,
University str., 4, 1000174, Tashkent, Republic of Uzbekistan;

E-mail: dil_faz@yahoo.com

Aziz N. Kazakov

Tashkent state technical university named after Islam Karimov,
University str., 2, 100095, Tashkent, Republic of Uzbekistan;
E-mail: Azlik19@yandex.ru

Ilkhom M. Alimukhamedov

Center of advanced technologies Ministry of Innovative Development of the Republic of Uzbekistan,
Olmazor district, Talabalar shaharchasi, 3A, 100174, Tashkent, Uzbekistan;
E-mail: info@cht-tashkent.uz

Abstract

The Republic of Uzbekistan currently uses the Baltic normal system of heights associated with the quasi-geoid surface. The introduction of innovative technologies of global navigation satellite systems (GNSS) made it possible to determine with high accuracy the geometric heights related to the Earth model — an ellipsoid. For a complex representation of spatial data and analysis of information about the territory, natural resources, man-made objects, their dynamics in the National Geographic Information System (NGIS), first of all, it is necessary to solve the problem of refining the reference vertical coordinate system and ensuring its connection with the global ones, namely, to ensure adjustment of these two height systems. The task is complicated by the fact that for the territory of the country there is no information about the quasi-geoid determined by modern methods, which are necessary for the transition from geometric ellipsoidal heights obtained using GPS measurements to normal heights which are used for solving a wide range of practical problems in various fields of environmental sciences. In recent years, global geopotential models of the Earth (GGM) calculated using various satellite missions has become an alternative solution to the problem. The study considers two high order GGMs (EGM2008 and GECO) to create a system of normal heights for the territory of the Fergana Valley. The height anomaly values for them reach the maximum for the region — about −49 m. The method of constructing parametric models (or corrective surfaces) using leveling and GPS measurements at “common points” was used to refine them. The range of corrections made was from −0.28 m to 0.29 m. Moreover, the GECO model was significantly improved compared to EGM2008 in the flatland part of the study area, which has large geoid anomalies. The Krasovsky ellipsoid and the corresponding Baltic height system were chosen as a reference surface to create in the future a grid for converting heights between local and geocentric coordinate systems. The results of a comprehensive statistical analysis made it possible to reveal that GECO gives a more accurate representation of the region’s relief and is recommended for solving practical problems in the Fergana Valley.

Keywords

EGM2008, GECO, GPS, vertical (height) reference system

References

  1. Altamimi Z., Rebischung P., Métivier L., Collilieux X. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions. Journal of Geophysical Research: Solid Earth, 2016. V. 121. No. 8. P. 6109–6131. DOI: 10.1002/2016JB013098.
  2. Barthelmes F., Köhler W. International Centre for Global Earth Models (ICGEM), in: Drewes H., Kuglitsch F., Adám J. et al. The Geodesists Handbook, Journal of Geodesy, 2016. V. 90. No. 10. P. 907–1205. DOI: 10.5194/egusphere-egu2020-3511.
  3. Dmitrenko A.P. Modern transformations of the geoid definition. Monography. Krivoy Rog: Mineral, 2012. 218 p. (in Russian).
  4. Dong D., Herring T.A., King R.W. Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of Geodesy, 1998. V. 72. P. 200–214. DOI: 10.1007/s001900050161.
  5. Drinkwater M.R., Floberghagen R., Haagmans R., Muz D., Popescu A. GOCE: ESA’s first Earth Explorer Core mission. In Earth Gravity Field from Space—From Sensors to Earth Sciences. Space Sciences Series of ISSI. Springer: Dordrecht, The Netherlands, 2003. V. 17. P. 419–432. DOI: 10.1023/A:1026104216284.
  6. Fazilova D., Magdiev H. Comparative study of interpolation methods in development of local geoid. International Journal of Geoinformatics, 2018. V. 14, No. 1. P. 29–33.
  7. Fazilova D., Magdiev H., Sichugova L. Vertical Accuracy Assessment of Open Access Digital Elevation Models Using GPS. International Journal of Geoinformatics, 2021. V. 17. No. 1. P. 19–26.
  8. Fazilova D.Sh, Ehgamberdiev Sh.A, Magdiev H.N. Analysis of the global gravity models of the Earth EIGEN-6C4 and EGM2008 on geodetic data in relation to Fergana valley. Transactions of IAA RAS. St. Petersburg, 2017. V. 42. P. 133–137. (in Russian).
  9. Forsberg R., Madsen F. High precision geoid heights for GPS levelling. Proceedings of GPS’90/SPG’90, 1990. P. 1060–1074.
  10. Förste Ch., Bruinsma S.L., Abrikosov O., Lemoine J.-M., Marty J.Ch., Flechtner F., Balmino G., Barthelmes F., Biancale R. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, 2014. DOI: 10.5880/ICGEM.2015.1.
  11. Fotopoulos G., Featherstone W.E., Sideris M.G. Fitting a gravimetric geoid model to the Australian Height Datum via GPS data. In: Tziavos I.N. Gravity and Geoid. Department of Surveying and Geodesy, Aristotle University of Thessaloniki, 2003. P. 173–178.
  12. Gilardoni M., Reguzzoni M., Sampietro D. GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 2016. V. 60. P. 228–247. DOI: 10.1007/s11200-015-1114-4.
  13. Haagmans R., de Min E, van Gelderen M. Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscripta Geodaetica, 1993. V. 18. P. 227–241.
  14. Hofmann-Wellenhof B., Moritz H. Physical Geodesy. 2nd edition. Wien: Springer, 2006. 403 p. DOI: 10.1007/978-3-211-33545-1.
  15. Herring T.A., King R.W., Floyd M., McClusky S.C. Introduction to GAMIT/GLOBK. Release 10.7. Technical report. Massachusetts Institute of Technology, 2018. Web resource: http://geoweb.mit.edu/gg/Intro_GG.pdf (accessed 10.09.2020).
  16. IERS Conventions. IERS Technical Note 36. Gérard Petit and Brian Luzum (eds.). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. 179 p.
  17. Jäger R. State of the art and present developments of a general concept for GPS based height determination. Proceedings of Geodesy Surveying in the Future, The Importance of Heights, International Federation of Surveyors, Gävle, Sweden, 1999. March 15–17. P. 161–174.
  18. Mukherjee S., Joshi P., Mukherjee S., Ghosh A., Garg R., Mukhopadhyay A. Evaluation of vertical accuracy of opensource Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 2013. V. 21. P. 205–217. DOI: 10.1016/j.jag.2012.09.004.
  19. Nepoklonov V.B. On the use of new models of the Earth’s gravitational field in automated survey and design technologies. Automated survey and design technologies, 2009. No. 3. Web resource: http://www.credo-dialogue.com/journal.aspx (accessed 05.02.2022) (in Russian).
  20. Pavlis N.K, Holmes S.A, Kenyon S.C, Factor J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth (1978–2012), 2012. V. 117. B04406. DOI: 10.1029/2011JB008916.
  21. Shretha R., Nazir A., Dewitt B., Smith S. Surface Interpolation Techniques to Convert GPS Ellipsoid Heights to Elevations. Surveying and Land Information Systems, 1993. V. 53. No. 2. P. 133–144.
  22. Soycan M. Improving EGM2008 by GPS and leveling data at local scale. Boletim de Ciências Geodésicas, 2014. V. 20 No. 1. P. 3–18. DOI: 10.1590/s1982-21702014000100001.
  23. Tapley B.D., Bettadpur S., Watkins M., Reigber C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett, 2004. V. 31. L09607.
  24. Ustyantsev V.N. The mechanism of formation of the structure of the Earth system. On the role of stationary energy centers in maintaining the dynamic balance of the Earth system. Geotetonics, 2011. Web resource: http://geo.web.ru (accessed 07.02.2022) (in Russian).

For citation: Fazilova D.Sh., Kazakov A.N., Alimukhamedov I.M. Improving global Geoid by GPS and leveling data over the Fergana valley territory. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 568–579. DOI: 10.35595/2414-9179-2022-1-28-568-579 (in Russian)