Creating virtual models for designing port complexes based on lidar data

https://doi.org/10.35595/2414-9179-2022-1-28-540-555

View or download the article (Rus)

About the Authors

Ilya A. Rylskiy

Lomonosov Moscow State University, Faculty of Geography, World Data Center for Geography,
Moscow, 119991, Russia;
E-mail: rilskiy@mail.ru

Anna Yu. Kozhukhar

Lomonosov Moscow State University, Faculty of Geography, World Data Center for Geography,
Moscow, 119991, Russia;
E-mail: ann3105880@yandex.ru

Anna I. Terskaia

Lomonosov Moscow State University, Faculty of Space Researches,
Moscow, 119991, Russia;
E-mail: arvin2@yandex.ru

Abstract

The design of port complexes is a process that requires considering geographical and economic features of the territory. It is necessary to aggregate the characteristics of coastal landscapes, seascapes, artificial elements, dangerous objects, etc. The experience of implementing such projects (for example, in Sabetta) suggests that all participants in the design process need highly precise geographical information to optimize the location of coastal facilities, infrastructure solutions, power supply lines, water conduits, product pipelines, and related structures. As for now, the best method of geoinformation support of such projects is LIDAR (with simultaneous nadir and perspective aerial surveys). In the future, these materials, combined with space-based remote sensing data on the surrounding areas, would be used for creating virtual models with tools adapted for users with an average and low-level GIS data experience. Nowadays geoinformation systems have a number of disadvantages. First and foremost, it is difficult for non-specialists to master them. Full-featured GIS packages are expensive and cannot be used by a significant number of specialists, dispersed over various settlements only using high-speed internet connections (designing port complexes requires the efforts of heterogeneous specialists living in different cities and working in different industries). The approach proposed in this paper allows to solve this problem without using GIS packages. We consider it possible to use virtual environments that are closed from editing and access to the source data. An area of 2400 km² in the territory of Kamchatka Peninsula near Bechevinka Bay was chosen as a test site. The resulting virtual model of the territory of the future port complex is a convenient tool for increasing the spatial awareness of users, closed from unauthorized access. The work has successfully achieved the functionality and usability of this model on conventional computers, combined with the high spatial accuracy of the model.

Keywords

airborne imagery, virtual model, remote sensing, GIS, LIDAR

References

  1. Allen P.K., Stamos I., Troccoli A.A., Smith B., Leordeanu M., Hsu Y. 3D modeling of historic sites using range and image data. Proceedings of the 2003 IEEE International Conference on Robotics and Automation, 2003. V. 1. P. 145–150.
  2. Chen Q. Airborne lidar data processing and information extraction. Photogrammetric Engineering & Remote Sensing, 2007. V. 73, No. 2. P. 109–112.
  3. Gorgens E., Valbuena R., Rodriguez L. A Method for Optimizing Height Threshold when Computing Airborne Laser Scanning Metrics. Photogrammetric Engineering & Remote Sensing, 2017. V. 83. No. 5. P. 343–350. DOI: 10.14358/PERS.83.5.343.
  4. Haala N., Brenner C., Anders K.-H. 3D urban GIS from laser altimeter and 2D map data. International Archives of Photogrammetry and Remote Sensing, 1998. P. 339–346.
  5. Korpela I. Mapping of understory lichens with airborne discrete-return LiDAR data. Remote Sensing of Environment, 2008. V. 112. No. 10. P. 3891–3897. DOI: 10.1016/J.RSE.2008.06.007.
  6. Lohr U. Digital elevation models by laserscanning: Principle and applications. Third International Airborne Remote Sensing Conference and Exhibition, 1997. P. 174–180.
  7. Mukul M., Mukul M., Srivastava V., Jade S. Uncertainties in the Shuttle Radar Topographic Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula, 2017. Sci Rep 7. https://doi.org/10.1038/srep41672
  8. Schwalbe E., Maas H., Seidel F. 3D building model generation from airborne laser scanner data using 2D GIS data and orthogonal point cloud projections. Proceedings of the International Society for Photogrammetry and Remote Sensing, 2005. P. 12–14.
  9. Zhang C., Chen T. Efficient feature extraction for 2D/3D objects in mesh representation. Proceedings of the 2001 International Conference on Image Processing, 2001. P. 935–938, 2001. DOI: 10.1109/ICIP.2001.958278.

For citation: Rylskiy I.A., Kozhukhar A.Yu., Terskaia A.I. Creating virtual models for designing port complexes based on lidar data InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 540–555. DOI: 10.35595/2414-9179-2022-1-28-540-555 (In Russian)