Application of unmanned aerial vehicles for geomorphological mapping of landslide slopes of the Aibga ridge (Western Caucasus)

DOI: 10.35595/2414-9179-2022-1-28-480-495

View or download the article (Rus)

About the Authors

Sergey A. Sokratov

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia;
E-mail: sokratov@geogr.msu.ru

Aleksandr A. Suchilin

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia,
E-mail: asuhov308@gmail.com

Aleksandr L. Shnyparkov

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia,
E-mail: malyn2006@yandex.ru

Lyudmila A. Ushakova

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia,
E-mail: la.ushakova@mail.ru

Ivan S. Voskresensky

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia,
E-mail: isvoskresensky@rambler.ru

Nadezhda I. Belaya

Lomonosov Moscow State University, The Earth Science Museum at Moscow State University (The Museum of Natural History),
Leninskie Gory 1, 119991, Moscow, Russia;
E-mail: belayanadegda@mail.ru

Abstract

Aerial sounding of the study area of the northern slope of the Aibga Ridge was carried out using unmanned aerial vehicles (UAVs) for geomorphological large-scale geoinformation mapping of landslide slopes. The site of work was chosen on the basis of the previously carried out ecological and geomorphological zoning of the slopes of the Aibga Ridge (Sochi National Park) and represents the slopes of the Chernaya Piramida mountain covered with forest and alpine meadows. A fragment of the ridge slope in the area of an ancient stabilized seismogenic gravitational landslide was studied. The morphology of the relief was partially changed during the construction of sports facilities—ski slopes and cable cars. The creation of clearings in forests, a partial change in the morphology of the natural relief and surface runoff conditions led to local activation of landslide processes, including on ski slopes and other infrastructure facilities. The newly formed landslide slopes are confined to the junction of natural and man-made relief forms: the ski slopes and the slopes of the hollows of temporary watercourses. As a result of field work using the global navigation satellite system (GNSS), a local reference geodetic network of centimeter accuracy was formed—a planned-altitude substantiation (PVO), which served as a geodetic basis for processing sounding materials and subsequent geoinformation mapping. Aerial sounding was carried out using the DJI Mavic 2 Pro and DJI Mini UAVs, more than 1,000 digital images of the study area in nadir and prospective have been accumulated. In addition, in order to identify the relief forms of the underlying surface on separate fragments of the study area, covered with dense broad-leaved forest (beech, hornbeam), a tacheometric survey was carried out. Field research materials served as the basis for geomorphological mapping of the landslide slopes of the Aibga Ridge and the creation of the corresponding thematic layers in the GIS software environment.

Keywords

GNSS, UAV, GIS, geomorphological mapping, mountain landslide slope

References

  1. Carbonneau P.E., Dietrich J.T. Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of structure from motion photogrammetry. Earth Surface Processes and Landforms, 2017. V. 42. No. 3. P. 473–486. DOI: 10.1002/esp.4012.
  2. D’Oleire-Oltmanns S., Marzolff I., Peter K.D., Ries J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sensing, 2012. V. 4. No. 11. P. 3390–3416. DOI: 10.3390/rs4113390.
  3. Fonstad M.A., Dietrich J.T., Courville B.C., Jensen J.L. Carbonneau P.E. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 2013. V. 38. No. 4. P. 421–430. DOI: 10.1002/esp.3366.
  4. Hazardous Exogenous Processes. V.I. Osipov, V.M. Kutepov, V.P. Zverev et al. Edited by V.I. Osipov. Moscow: GEOS, 1999. 290 p. (in Russian).
  5. James M.R., Robson S., d’Oleire-Oltmanns S., Niethammer U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, 2017. V. 280. P. 51–66. DOI: 10.1016/j.geomorph.2016.11.021.
  6. Kaiser A., Neugirg F., Rock G., Müller C., Haas F., Ries J., Schmidt J. Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion. Remote Sensing, 2014. V. 6. No. 8. P. 7050–7080. DOI: 10.3390/rs6087050.
  7. Kapchelia A.M., Osiuk V.A. Relief and exogenic processes Kodre of Moldova. Executive editor U.G. Simonov. Kishinev: “Stiinca”, 1989. 228 p. (in Russian)
  8. Lucieer A., de Jong S.M., Turner D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 2014. V. 38. No. 1. P. 97–116. DOI: 10.1177/0309133313515293.
  9. Niethammer U., Rothmund S., James M.R., Travelletti J., Joswig M. UAV-based remote sensing of landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2010. V. XXXVIII. Part 5. P. 496–501.
  10. Rock G., Ries J.B., Udelhoven T. Sensitivity Analysis of UAV-Photogrammetry for Creating Digital Elevation Models (DEM). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011. V. XXXVIII-1/C22. P. 69–73. DOI: 10.5194/isprsarchives-XXXVIII-1-C22-69-2011.
  11. Smith M, Chandler J, Rose J. High spatial resolution data acquisition for the geosciences: kite aerial photography. Earth Surface Processes and Landforms, 2009. V. 34. No. 1. P. 161–255. DOI: 10.1002/esp.1702.
  12. Smith M.W., Vericat D. From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surface Processes and Landforms, 2015. V. 40. No. 12. P. 1656–1671. DOI: 10.1002/esp.3747.
  13. Suchilin A.A., Belaya N.I., Voskresensky I.S., Mikheeva S.N., Zorina V.V. Ushakova L.A., Shaforostov V.M., Sokratov S.A. Methods for studying the morphology of abrasion-accumulative coast of the west coast of the Crimea using UAV and GNSS (in the example of a land of the territory of great Sevastopol) InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Faculty of Geography MSU, 2021. V. 27. Part 1: 351–363 (in Russian). DOI: 10.35595/2414-9179-2021-1-27-351-363.
  14. Tonkin T.N., Midgley N.G., Graham D.J., Labadz J.C. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales. Geomorphology, 2014. V. 226. P. 35–43. DOI: 10.1016/j.geomorph.2014.07.021.
  15. Trofimov V.T., Harkina M.A., Grigoreva I.J. Ecological geodynamics. Moscow: “KDU”, “Universitetskaya kniga”, 2008. 473 p. (in Russian).
  16. Turner D., Lucieer A., De Jong S.M. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sensing, 2015. V. 7. No. 2. P. 1736–1757. DOI: 10.3390/rs70201736.
  17. Voskresenskaya E.V., Voskresensky I.S., Sokratov S.A, Suchilin A.A., Shnyparkov A.L., Ushakova L.A., Geomorphological conditions of formation of landslides hazards in the Western Caucasus and methods of their monitoring. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Faculty of Geography MSU, 2020. V. 22. Part 1. P. 264–274 (in Russian). DOI: 10.35595/2414-9179-2020-2-26-264-274.
  18. Voskresensky I.S., Suchilin A.A., Ushakova L.A., Shaforostov V.M., Entin A.L. The application of UAV for erosion and landslide processes monitoring (case study of the central part of the Russian Plane). The use of unmanned aerial vehicles in geographical research. Irkutsk: Publishing House of the Institute of Geography V.B. Sochava SB RAS, 2018. P. 42–47 (in Russian).
  19. Voskresensky S.S. Dynamic geomorphology. The formation of the slopes. Moscow: Moscow University Press, 1971. 230 p. (in Russian).
  20. Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 2012. V. 179. P. 300–314. DOI: 10.1016/j.geomorph.2012.08.021.

For citation: Sokratov S.A., Suchilin A.A., Shnyparkov A.L., Ushakova L.A., Voskresensky I.S., Belaya N.I. Application of unmanned aerial vehicles for geomorphological mapping of landslide slopes of the Aibga ridge (Western Caucasus). InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 480–495. DOI: 10.35595/2414-9179-2022-1-28-480-495 (in Russian)