Creating a fault map of the Central-Kamushovy meganticlinorium of the Western Sakhalin mountains by space survey data

DOI: 10.35595/2414-9179-2022-1-28-417-429

View or download the article (Rus)

About the Authors

Vyacheslav A. Melkiy

Institute of Marine Geology and Geophysics of the Far Eastern branch of Russian Academy of Sciences, Laboratory of Volcanology and volcano hazard,
1B, Nauki str., Yuzhno-Sakhalinsk, 693022;
E-mail: vamelkiy@mail.ru

Olesya V. Kuptsova

Sakhalin State University, Technical Oil and Gas Institute,
2 Pogranichnaya str., Yuzhno-Sakhalinsk, 630023, Russia;
E-mail: Korsuncevaolesy@gmail.com

Alexey A. Verkhoturov

Institute of Marine Geology and Geophysics of the Far Eastern branch of Russian Academy of Sciences, Center for collective use,
1B, Nauki str., Yuzhno-Sakhalinsk, 693022, Russia;
E-mail: ussr-91@mail.ru

Abstract

The network of fault zones caused by vertical and horizontal tectonic displacements blocks of Earth’s crust relative to each other is clearly visible on the Earth’s surface in images obtained from satellite surveys. Many researchers distinguish linear and annular structures among the faults. Lineaments in satellite images are detected as rectilinear objects with a certain spectral brightness. The initial data for the experimental research includes images from the Landsat-8 satellite and SRTM data. The lineament analysis of satellite images and SRTM data of the Central-Kamyshovy meganticlinorium of the West Sakhalin Mountains was carried out using the functionality of the LEFA software package using the developed decryption technology. The obtained results were processed using the QGIS program tools. Statistical processing of Sakhalin lineaments was carried out on the basis of researching distribution directions of linear segments set of vector strokes data and lineaments data. The map of disjunctive disturbances of the Central-Kamyshovy meganticlinorium of Western Sakhalin Mountains on a scale 1:500 000 was compiled by basis of data obtained. The analysis of SRTM model with the help of LEFA toolkit made it possible to identify zones where discontinuous disturbances of the Earth’s crust are located. As a result of analysis, West Sakhalin fault and many other faults of a rank below 2 were identified. Fault zones are mapped on scale of 1:500 000. It was revealed that 15.3 % of all earthquakes in this area were timed to the Krasnopolsky fault, including in the zone within 1 km from the fault—70 %, 1–2 km—19 %, 2–3 km—9 %, more than 3 km—2 %. The results of work will be useful in choosing places for construction of industrial facilities, as well as for seismic zoning of territory.

Keywords

remote sensing, geoinformation mapping, disjunctive disturbances, earthquake epicenters, LEFA

References

  1. Bachmanov D.M., Kozhurin A.I., Trifonov V.G. The active faults of Eurasia database. Geodynamics & Tectonophysics. 2017 V. 8 No. 4. P. 711–736. (in Russian). DOI: 10.5800/GT-2017-8-4-0314.
  2. Bondur V.G., Zverev A.T., Kuznetsova L.V. Space monitoring of the dynamics of lineament systems during the preparation of earthquakes in California. Izvestiya verkhovnykh uchebnykh zavedeniy. Geodesy and Aerial Photography, 2005. No. 5. P. 47–55. (in Russian).
  3. Bondur V.G., Zverev A.T. Lineament System Formation Mechanisms Registered in Space Images During the Monitoring of Seismic Danger Areas. Izvestiya. Atmospheric and Oceanic Physics, 2007. No. 1. P. 47–56. (in Russian).
  4. Bryukhanov V.N., Bush V.A., Glukhovsky M.Z., Zverev A.T., Katz Ya.G., Makarova N.V., Sulidi-Kondratiev E.D. Ring structures of the Earth’s continents. Moscow: Nauka, 1987, 184 p.
  5. Canny J.F.A. Computational A Proach to Edge Detection. IEEE transactions on pattern analysis and machine intelligence, 1986. V. PAMI-8, No. 6. NOV. Web resource: http://perso.limsi.fr/vezien/P APIERS_ACS/canny1986.pdf (accessed 03.03.2022).
  6. Galamhos C., Matas J., Kittler J. Progressive probabilistic Hough transform for line detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999. P. 554–560. Web resource: https://dspace.cvut.cz/bitstream/handle/10467/9451/1999-Progressive-probabilistic-Hough-Transform-for-line-detection.pdf?sequence=1 (accessed 03.03.2022).
  7. Hobbs W.H. Lineaments of the Atlantic border region. Bull. Geol. Soc. Amer, 1904. V. 15. P. 483–506.
  8. Ivanchenko G.N. Lineament analysis of space images in the construction of geodynamic model of Tunka branch of the Baikal rift zone. Dynamic processes in geospheres. 2012. No. 3. P. 74–82. (in Russian).
  9. Izosov L.A., Lee N.S. Problems of the global vortex geodynamics. Regional problems, 2017. V. 20, No. 1. P. 27–33. (in Russian).
  10. Katz Ya.G., Poletaev A.I., Rumyantseva E.F. Fundamentals of lineament tectonics. Moscow: Nedra, 1986. 140 p. (in Russian).
  11. Kharakhinov V.V., Galtsev-Bezyuk S.D., Tereshchenkov A.A. Sakhalin Faults. Pacific Geology, 1984. No. 2. P. 77–86 (in Russian).
  12. Kocharyan G.G., Batuhtin I.V., Budkov A.M., Ivanchenko G.N., Kishkina S.B., Pavlov D.V. On the initiation of dynamic slips on faults by man-made impacts. Izvestiya. Atmospheric and Oceanic Physics, 2019. V. 55. No. 10. P. 1559–1571.
  13. Kogan M.G., Burgmann R., Vasilenko N.F., Scholz C.H., King R.W., Ivashchenko A.T., Frolov D.I., Steblov G.M., Kim Ch.U., Egorov S.G. The 2000 Mw 6.8 Uglegorsk earthquake and regional plate boundary deformation of Sakhalin from geodetic data. Geophys. Res. Lett. 2003. V. 30, No. 3. 1102. DOI: 10.1029/2002GL016399.
  14. Koronovskii N.V., Zlatopol’skii A.A., Ivanchenko G.N. Structural analysis of space imagery via computer-aided interpretation. Soviet Journal of Remote Sensing. 1990. V. 6. No. 1. P. 114–121.
  15. Kuptsova O.V., Verkhoturov A.A., Melkiy V.A. Mapping faults in the territory of the North Sakhalin Plain according to remote sensing data. InterCarto. InterGIS. Geoinformation support for sustainable development of territories: proceedings of the international. conf. Moscow: Faculty of Geography of Moscow State University, 2021. V. 27. P. 317–329 (in Russian).
  16. Kuptsova O.V., Melkiy V.A., Verkhoturov A.A. Identification of disjunctive dislocations as one of the parameters for estimating a territory seismicity of North Sakhalin. IOP Conference Series: Earth and Environmental Science, Volume 946, IV National Scientific Conference with Foreign Participants: Geodynamical Processes and Natural Hazards (4th GeoProNH 2021) 6th–10th September 2021, Yuzhno-Sakhalinsk, Russian Federation, 2021, 012003 Web resource: https://iopscience.iop.org/article/10.1088/1755-1315/946/1/012003.
  17. Lomtev V.L., Patrikeev V.N. Faults of Northern Sakhalin: structural features and seismic hazard. Geology and mineral resources of World Ocean, 2016. № 3. P. 44–58 (in Russian).
  18. Lomtev V.L., Zherdeva O.A. To seismotectonic Sakhalin: new approaches. Geology and mineral resources of World Ocean, 2015. No. 3. P. 56–68 (in Russian).
  19. Lunina O.V. The digital map of the Pliocene-quaternary crustal faults in the Southern East Siberia and the adjacent Northern Mongolia. Geodynamics & Tectonophysics, 2016. V. 7. No. 3. P. 407–434. (in Russian), DOI: 10.5800/GT-2016-7-3-0215.
  20. Prytkov A.S., Vasilenko N.F. The dislocation model of the 2000 Uglegorsk earthquake source (Sakhalin Island). Pacific geology. 2006. V. 25. No. 6. P. 115–122 (in Russian).
  21. Saprygin S.M. Faults and waveguides in the Sakhalin depths. Geosystems of Transition Zones, 2017. V. 1. No. 4. P. 47–52 (in Russian).
  22. Shevyrev S.L. LEFA software: an automatized structural analysis of remote sensing imagery in MATLAB environment. Advances in Current Natural sciences, 2018. No. 10. P. 138–143 (in Russian).
  23. Trifonov V.G., Makarov V.I., Safonov Yu.G., Florensky P.V. Space information in geology. 1983. 370 p. (in Russian).
  24. Tsutsumi H., Kozhurin A., Streltsov M.I., Ueki T., Suzuki Y., Watanabe M. Active faults and paleoseismology in northeastern Sakhalin II Journal of Geography, 2000. V. 109. № 2. P. 294–301 (in Japanese).
  25. Udhi C., Arum T. Lineament density information extraction using DEM SRTM data to predict the mineral potential zone. International Journal of Remote Sensing and Earth Science, 2016. Vol. 13. No. 1. P. 67–74.
  26. Utkin V.P. Shear dislocations and methods of their study. Moscow: Nauka, 1980. 144 p.
  27. Utkin V.P. Strike-slip related tectogenesis and structure-forming flow of crustal masses of the Asia-Pacific transition zone. Lithosphere (Russia). 2019. V. 19. No. 5. P. 780–799 (in Russian). DOI: 10.24930/1681-9004-2019-19-5-780-799.
  28. Vasilenko N.F., Ivashchenko A.I., Kim Chun Un. Deformations of the Earth’s surface in the epicentral zone of the Neftegorsk earthquake on May 27 (28), 1995. Dynamics of focal zones and forecasting of strong earthquakes in the North-West of the Pacific Ocean. IMGiG FEB RAS. Ed. A.I. Ivashchenko. Yuzhno-Sakhalinsk: IMGiG FEB RAS, 2001. V. 1. P. 39–57 (in Russian).
  29. Vortices in geological processes. Ed. A.V. Vikulin. Petropavlovsk-Kamchatsky: Publishing House of the Kamchatka State Pedagogical University, 2004. 297 p. (in Russian).
  30. Zakupin A.S., Kamenev P.A., Voronina T.E., Boginskaya N.V. The estimation of seismic hazard in south part of Sakhalin for 2018 year (based on preliminary catalog). Geosystems of Transition Zones, 2018. V. 2. No. 1. P. 52–56 (in Russian). DOI: 10.30730/2541-8912.2018.2.1.052-056.
  31. Zverev A.T., Malinnikov V.A., Arellano-Baesa A. Studying Dynamics of lineaments caused by earthquakes in South America, using the lineament analysis of ASTER (TERRA) satellite data. Proceedings of higher educational establishments. Geodesy and Aerophotosurveying, 2005. No. 5. P. 56–65 (in Russian).
  32. Zverev A.V., Zverev A.T. Application of automated lineament analysis of satellite images in the search for oil and gas fields, earthquake prediction, slope processes, and underground water migration paths. Proceedings of higher educational establishments. Geology and Exploration, 2015. No. 6. P. 14–20. (in Russian).

For citation: Melkiy V.A., Kuptsova O.V., Verkhoturov A.A. Creating a fault map of the Central-Kamushovy meganticlinorium of the Western Sakhalin mountains by space survey data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 417–429. DOI: 10.35595/2414-9179-2022-1-28-417-429 (in Russian)