The hybrid method of water levels and volumes reconstructing in the Arakhley lake (Trans-Baikal territory) according to Landsat remote sensing data with unmanned aerial vehicles images fusion

DOI: 10.35595/2414-9179-2022-1-28-368-382

View or download the article (Rus)

About the Authors

Konstantin A. Kurganovich

Transbaikal State University, Faculty of Construction and Ecology,
Alexandro-Zavodskaya, 30, 672039, Chita, Russia;
E-mail: naptheodor@mail.ru

Denis V. Kochev

Transbaikal State University, Faculty of Construction and Ecology,
Alexandro-Zavodskaya, 30, 672039, Chita, Russia;
E-mail: denis.ko4ev@yandex.ru

Maxim A. Bosov

Transbaikal State University, Faculty of Construction and Ecology,
Alexandro-Zavodskaya, 30, 672039, Chita, Russia;
E-mail: max.bosov@mail.ru

Abstract

The use of a hybrid method for reconstructing water levels and volumes of water mass in a reservoir is considered on the example of the Arakhley Lake of the Trans-Baikal Territory. The method makes it possible to obtain high spatial resolution cuts of water levels on the relief based on satellite images of the Landsat system of different time intervals and images from unmanned aerial vehicles (UAVs) as a source of a highly detailed digital elevation model. As a result of processing the Landsat satellite data, the values of the Arakhley Lake surface areas for the period 1987–2018 were obtained. Based on the results of the UAV survey, the water levels in the lake were extracted according to the survey dates corresponding to the areas. The root mean square error of water level determination (RMSE) was 0.23 m, which is lower than the horizontal resolution of the elevation model (0.3 m) obtained from the UAV data. Also, the characteristics of the water mass volume were obtained for the variable part of the lake volume for the period 1987–2018. The use of the hybrid method considered in the article will solve the problem of insufficient or complete absence of data on the long-term water regime of unexplored lakes and reservoirs. Evaluation of the possibilities of using this technology by comparing with the instrumental characteristics of water levels at the regime point of hydrological observations, shows the boundaries of its use, advantages and disadvantages. At the same time, the main advantage can be recognized as the possibility of obtaining time series of changes in levels and volumes over the past years in those lakes and reservoirs where there have never been ground observations and are unlikely to be. In the case of establishing the dependences of the water mass volume on the areas of the water surface, it becomes possible to perform operational hydrological monitoring of water bodies using only Landsat satellite images.

Keywords

morphometric characteristics of lakes, unmanned aerial vehicles, digital terrain model, spectral water indices

References

  1. Chipman J.W. A multisensor approach to satellite monitoring of trends in lake area, water level, and volume. Remote Sensing, 2019. No. 11 (2). P. 158. DOI: 10.3390/rs11020158.
  2. Evangelidis G.D., Psarakis E.Z. Parametric Image Alignment using Enhanced Correlation Coefficient Maximization. IEEE Transaction on Pattern Analysis & Machine Intelligence, 2008. V. 30. No. 10. P. 1858–1865.
  3. Feyisa G.L., Meilby H., Fensholt R., Proud S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 2014, 140. P. 23–35.
  4. Gao B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996. No. 58. P. 257–266.
  5. Golyatina M.A. Evaluation of changes in the morphometric characteristics of steppe lakes in the South-East of Transbaikalia using data from remote sensing of the earth. Notes of the Transbaikal Branch of the Russian Geographical Society. Chita: Transbaikal State University, 2016. P. 68–75 (in Russian).
  6. Golyatina M.A., Kurganovich K.A. Estimation of changes in the areas of the water surface of the Ivano-Arakhlei lakes of Transbaikalia according to remote sensing data. Bulletin of the Transbaikal State University, 2017. V. 23. No. 6. P. 4–12 (in Russian).
  7. Im S.T., Haruk V.I., Rakityanskaya N.M., Goyukov A.S. Climatogenic dynamics of lakes in the ecotone of the forest-steppe of Transbaikalia. Siberian Ecological Journal, 2015. V. 22. No. 6. P. 823–831 (in Russian).
  8. Ji L., Zhang L., Wylie B. Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering and Remote Sensing, 2009. No. 75. P. 1307–1317.
  9. Kolmakova M.V., Zaharova E.A., Kuraev A.V., Zemcov V.A., Kirpotin S.N. Temporal variability of climate and watering of the territory of Western Siberia according to meteorological stations, model reanalysis and satellite altimetry. Bulletin of Tomsk State University, 2012. No. 364. P. 173–180 (in Russian).
  10. Kurganovich K.A., Bosov M.A. Using a hybrid method for analyzing satellite monitoring data and unmanned aerial vehicles to identify flood zones in settlements. Education in the field of life safety and new technologies: problems and development prospects. Proceedings of the III All-Russian Scientific and Practical Conference. Chita: Transbaikal State University, 2018. P. 66–69 (in Russian).
  11. Kurganovich K.A., Noskova E.V. The use of water indices to assess changes in the areas of the water surface of steppe soda lakes in the South-East of Transbaikalia, according to remote sensing data. Bulletin of the Transbaikal State University, 2015. No. 6 (121). P. 16–24 (in Russian).
  12. Kurganovich K.A., Shalikovskiy A.V., Bosov M.A., Kochev D.V. The use of unmanned aerial vehicles for monitoring the state of ownerless flood control hydraulic structures in the Transbaikal Territory. Hydrosphere. Dangerous processes and phenomena, 2020. V. 2. No. 1. P. 32–43 (in Russian).
  13. Lacaux J.P., Tourre Y.M., Vignolles C., Ndione J.A., Lafaye M. Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever Epidemics in Senegal. Remote Sensing of Environment, 2006. No. 106 (1). P. 66–74. DOI: 10.1016/j.rse.2006.07.012.
  14. Lebedev S.A. Dynamics of the Caspian Sea according to satellite altimetry data. Modern problems of remote sensing of the Earth from space, 2015. V. 12. No. 4. P. 72–85 (in Russian).
  15. Lebedev S.A. Satellite altimetry in geosciences. Modern problems of remote sensing of the Earth from space, 2013. V. 10. No. 3. P. 33–49 (in Russian).
  16. Manilyuk T.A., Maslova A.V. Investigation of water surfaces of lakes by using water indices according to remote sensing data. Bulletin of the Transbaikal State University, 2017. V. 23. No. 3. P. 4–11 (in Russian).
  17. Morriss B., Hawley R., Chipman J., Andrews L., Catania G., Hoffman M., Lüthi P., Neumann T. A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery. Cryosphere, 2013. No. 7. P. 1869–1877.
  18. Nan Xu, Yue Ma, Wenhao Zhang, Xiao Hua Wang, Fanlin Yang, Dianpeng Su. Monitoring Annual Changes of Lake Water Levelsand Volumes over 1984–2018 Using Landsat Imageryand ICESat-2 Data. Remote Sensing, 2020. No. 12. P. 4004. DOI: :10.3390/rs1223400.
  19. Obyazov V.A. Hydrological regime of the lakes of Transbaikalia in a changing climate (on the example of the Ivano-Arakhlei lakes). Water management in Russia: problems, technologies, management, 2011. No. 3. P. 4–14 (in Russian).
  20. Shalikovskiy A.V., Zaslonovskiy V.N., Kurganovich K.A., Bosov M.A., Soloduhin A.A., Shalikovskiy D.A. A current situation on the border section of the Argun River. Water management in Russia: problems, technologies, management, 2018. No. 2. P. 4–18 (in Russian).
  21. Troickaya Yu.I., Rybushkina G.V., Soustova I.A., Balandina G.N., Lebedev S.A., Kostyanoj A.G., Panyutin A.A., Filina L.V. Satellite altimetry of inland waters. Water resources, 2012. V. 39. No. 2. P. 169 (in Russian).
  22. Wang X., Cheng X., Gong P., Huang H., Li Z., Li X. Earth science applications of ICESat/GLAS: A review. International Journal of Remote Sensing, 2011. No. 32. P. 8837–8864.
  23. Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 2012. V. 179. P. 300–314. DOI: 10.1016/j.geomorph.2012.08.021.
  24. Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 2006. No. 27. P. 3025–3033.

For citation: Kurganovich K.A., Kochev D.V., Bosov M.A. The hybrid method of water levels and volumes reconstructing in the Arakhley lake (Trans-Baikal territory) according to Landsat remote sensing data with unmanned aerial vehicles images fusion. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 368–382. DOI: 10.35595/2414-9179-2022-1-28-368-382 (in Russian)