Analysis of the lower Volga floodplain landscapes burning according to active fire and burnt areas satellite data

https://doi.org/10.35595/2414-9179-2022-1-28-346-358

View or download the article (Rus)

About the Author

Asel N. Berdengalieva

Federal scientific center of agroecology, complex meliorations and agroforestry of RAS,
Universitetsky pr., 97, 400062, Volgograd, Russia;
E-mail: berdengalieva-an@vfanc.ru

Abstract

Landscape fires have significantly intensified in the last two decades. A lot of research is devoted to forest fires, while much less attention is paid to the analysis of the burning of non-forest lands. The floodplain landscapes of the arid zone, which include the Volga-Akhtuba floodplain with the Volga delta, are practically not covered by studies of the fire regime. The aim of the work is to establish the spatio-temporal regularities of the burning of the floodplain landscapes of the Volga in its lower reaches according to the detection of active burning and burnt areas based on Earth remote sensing technologies. The work used MCD14ML (FIRMS), MCD64A1, FireCCI51 and GABAM data for 2001–2020, the first three of which are based on MODIS data, the last one is based on Landsat data. Each of the products has both omissions and false definitions and artifacts. Nevertheless, a joint analysis of all the data makes it possible to obtain a fairly reliable assessment of the flammability. In total, during the study period, the total area of burned areas ranged from 2.9 million hectares to 4.8 million, according to estimates of different products. The average long-term flammability is 9.2 % of the study area. The maximum burning rate was noted in 2019 (15.4 %), and the minimum—in 2016 (2.8 %). These years are characterized by the shortest and longest duration of periods of maximum flood flow, respectively. The influence of the hydrological situation on the burning of floodplain landscapes is confirmed by the correlation analysis. A significant correlation between the fire rate and the flood level and its duration has been established. The higher the maximum flood level of the floodplain and the longer the water stays on the floodplain, the lower the flammability. This is especially pronounced in the Volga delta, where, due to the reduction in flood costs and the drop in the level of the Caspian Sea, the drying of floodplain landscapes is intensifying. This leads to the intensification of fires. In addition to the hydrological situation, the weather affects the flammability. At the same time, the main climatic factor is atmospheric moisture. The more rainfall, the less fire. The air temperature does not affect the size of the burnt area, since the temperatures remain quite high throughout the entire warm period. Trends in hydrological changes are aimed at reducing the water content of the flood, which will lead to the drying of the floodplain against the backdrop of a continuing drop in the level of the Caspian Sea. With the existing system of fire prevention, we should expect a further increase in the burning of landscapes.

Keywords

remote sensing, wildfire, FIRMS, MCD64A1, GABAM, FireCCI51

References

  1. Barmin A.N., Golub V.B. Instructive lesson of results of reed thickets operation in the Volga river delta. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2000. V. 2. № 2. P. 295–299. (in Russian).
  2. Bartalev S.A., Egorov V.A., Efremov V.Yu., Loupian E.A., Stytsenko F.V., Flitman E.V. Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012. V. 9. No. 2, P. 9–27 (in Russian).
  3. Bartalev S.A., Stytsenko F.V., Khvostikov S.A., Loupian E.A. Methodology of post-fire tree mortality monitoring and prediction using remote sensing data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017. V. 14. No. 6. P. 176–193. (in Russian) DOI: 10.21046/2070-7401-2017-14-6-176-193.
  4. Bartalev S.A., Ershov D.V., Loupian E.A., Tolpin V.A. Possibilities of satellite service VEGA using for different tasks of land ecosystems monitoring. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012. V. 9. No. 1. P. 49–56 (in Russian).
  5. Chuvieco E., Pettinari M.L., Lizundia-Loiola J., Storm T., Padilla Parellada M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel product, version 5.1. Centre for Environmental Data Analysis. 2018. DOI: 10.5285/58f00d8814064b79a0c49662ad3af537.
  6. Dubinin M., Lushekina A., Radeloff V.C. 2011. Climate, Livestock, and Vegetation: What Drives Fire Increase in the Arid Ecosystems of Southern Russia? Ecosystems. 2011 V. 14. P. 547–562. DOI: 10.1007/s10021-011-9427-9.
  7. Dubinin M., Potapov P., Lushekina A., Radeloff V.C. Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sensing of Environment. 2010. V. 114. P. 1638–1648. DOI: 10.1016/j.rse.2010.02.010.
  8. Dymova T.V. Main and related factors impact on the environment of the reed fires, Astrakhan Bulletin of Ecological Education, 2019. No. 2. P. 210–214. (in Russian).
  9. Giglio L., Boschetti L., David P.R., Humber M.L. Justice C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment. 2018. V. 217. P. 72–85. DOI: 10.1016/j.rse.2018.08.005.
  10. Giglio L., Descloitres J., Justice C.O., Kaufman Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment. 2006. V. 87. P. 273–282. DOI: 10.1016/S0034-4257(03)00184-6.
  11. Giglio L., Justice C., Boschetti L., Roy D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V0 06 [Data set]. NASA EOSDIS Land Processes DAAC. 2015. DOI: 10.5067/MODIS/MCD64A1.006.
  12. Giglio L., Loboda T., Roy D.P., Quale B., Justice C.O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment. 2020. V. 113. P. 408–420. DOI: 10.1016/j.rse.2008.10.006.
  13. Golub V.B., Chuvashov A.V., Bondareva V.V., Gerasimova K.A., Nikolaichuk L.F. Changes in the flora composition of the Volga–Akhtuba floodplain after regulation of the flow of Volga river. Arid ecosystems. 2020. V. 10. No. 1. P. 44–51. DOI: 10.1134/S2079096120010047.
  14. Kotelnikov R.V., Loupian E.A., Bartalev S.A., Ershov D.V. Space Monitoring of Forest Fires: History of the Creation and Development of ISDM-Rosleskhoz. Contemporary Problems of Ecology. 2020. V. 13. No. 7. P. 795–802. DOI: 10.1134/S1995425520070045
  15. Krivoshei V.A., The Volga River: Problems and Solutions, Moscow: Zhurnal “RT”, 92 p. (in Russian).
  16. Kuzmina Zh.V., Treshkin S.E., Shinkarenko S.S. Effects of River Control and Climate Changes on the Dynamics of the Terrestrial Ecosystems of the Lower Volga Region. Arid Ecosystems. 2018. V. 8. No. 4. P. 231–244. DOI: 10.1134/S2079096118040066.
  17. Loboiko V.F., Ovcharova A.Yu., Nikitina N.S., Features of the water regime of the Lower Volga and its impact on the condition of the north-western part of the Volga–Akhtuba floodplain. Izvestia of the Lower Volga Agro-University Complex, 2018. No. 4 (52). P. 89–96. (in Russian). DOI: 10.32786/2071-9485-2018-04-11.
  18. Long T., Zhang Z., He G., Jiao W., Tang C., Wu B., Zhang X., Wang G., Yin R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489 p. DOI: 10.3390/rs11050489.
  19. Loupian E.A., Bartalev S.A., Balashov I.V., Egorov V.A., Ershov D.V., Kobets D.A, Senko K.S., Stytsenko F.V., Sychugov I.G. Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017. V. 14, No. 6. P. 158–175. (in Russian). DOI: 10.21046/2070-7401-2017-14-6-158-175.
  20. Loupian E.A., Bartalev S.A., Ershov D.V., Kotelnikov R.V., Balashov I.V., Burtsev M.A., Egorov V.A., Efremov V.Yu., Zharko V.O., Kovganko K.A., Kolbudaev P.A., Krasheninnikova Yu.S., Proshin A.A., Mazurov A.A., Uvarov I.A., Stytsenko F.V., Sychugov I.G., Flitman E.V., Khvostikov S.A., Shulyak P.P. Satellite data processing management in Forest Fires Remote Monitoring Information System (ISDMRosleskhoz) of the Federal Agency for Forestry. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015a. V. 12. No. 5. P. 222–250 (in Russian).
  21. Loupian E.A., Proshin A.A., Burtsev M.A., Balashov I.V., Bartalev S.A., Efremov V.Yu., Kashnitskiy A.V., Mazurov A.A., Matveev A.M., Sudneva O.A., Sychugov I.G., Tolpin V.A., Uvarov I.A. IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015b. V. 12. No. 5. P. 263–284. (in Russian).
  22. Pavleichik V.M. Experience of data application of remote sensing In studies of steppe fires. Advances in current natural sciences, 2018. No. 11. P. 377–382. (in Russian).
  23. Pavleichik V.M. On the question of the activation of steppe fires (on the example of the Trans-Volga-Ural region). Proceedings of VGU, Geography. Geoecology, 2016. No. 3. P. 15–25. (In Russian).
  24. Pavleichik V.M., Chibilev A.A. Steppe fires in conditions the regime of reserve and under changing anthropogenic impacts. Geography and natural resources. 2018. V. 39. № 3. P. 212–221. DOI: 10.1134/S1875372818030046.
  25. Shinkarenko S.S., Assessment of steppe burning dynamics in Astrakhan Region. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018. V. 15. No. 1. P. 138–146 (in Russian). DOI: 10.21046/2070-7401-2018-15-1-138-146.
  26. Shinkarenko S.S., Bartalev S.A., Berdengalieva A.N., Ivanov N.M. Spatio-temporal analysis of burnt area in The Lower Volga floodplain. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022. V. 19. No. 1. P. 143–157 (in Russian). DOI: 10.21046/2070-7401-2022-19-1-143-157.
  27. Shinkarenko S.S., Berdengalieva A.N. Analysis of steppe fires long-term dynamics in Volgograd Region. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16. No. 2. P. 98–110 (in Russian). DOI: 10.21046/2070-7401-2019-16-2-98-110.
  28. Shinkarenko S.S., Doroshenko V.V., Berdengalieva A.N., Komarova I.A. Dynamics of arid landscapes burning in Russia and adjacent territories based on active fire data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021. V. 18. No. 1. P. 149–164. (in Russian) DOI: 10.21046/2070-7401-2021-18-1-149-164.
  29. Shinkarenko S.S., Ivanov N.M., Berdengalieva A.N. Spatio-temporal dynamics of burnt areas in federal protected areas of South-East of the European part of Russia. Nature Conservation Research, 2021. V. 6. No. 3. P. 23–44. (in Russian). DOI: 10.24189/ncr.2021.035.

For citation: Berdengalieva A.N. Analysis of the lower Volga floodplain landscapes burning according to active fire and burnt areas satellite data InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 346–358. DOI: 10.35595/2414-9179-2022-1-28-346-358 (In Russian)