Vegetation dynamics of the Norilsk industrial region under the influence of aerotechnogenic and natural factors

DOI: 10.35595/2414-9179-2022-1-28-325-345

View or download the article (Rus)

About the Authors

Valentina I. Kravtsova

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia;
E-mail: valentinamsu@yandex.ru

Oleg M. Zheleznyy

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia;
E-mail: olegzhelezn@gmail.com

Abstract

This study focuses on the transformation of vegetation, degraded over vast areas due to industrial air pollution from the Norilsk metallurgical combine. To assess the current state of ecosystems, we employed a vegetation map that was compiled using median composites of summer imagery 2015–2021 from the Sentinel 2B satellite. The field data collected by a team of geographers from Moscow State University in 2021 was also considered. The analysis of the transformation of vegetation during the operation of the mining and smelting plant is based on a comparison of the vegetation map with the materials of field studies of the same team in 1997 and the vegetation classification based on Landsat images from 1995, taking into account earlier materials such as topographic maps of 1960 and 1977, and forest pathological surveys of the 1980s. For comparison with less detailed materials of previous years, the 2015–2021 map was transformed: similar mosaics of contours were identified on it. This provided the basis for identifying areas with a similar character of vegetation disturbance caused by industrial air pollution. Such areas were then combined into exposure profiles, which allowed us to analyze the transformation of vegetation at different distances and directions from the plant—in accordance with the prevalent winds. The successive replacement of dead forests by shrub and dwarf shrub tundra, degraded dwarf shrub tundra, and technogenic grassy and stony wastelands, as recorded by the 2015–2021 map, was revealed. The substitution series manifest themselves differently in various directions from the combine. Grassy and stony wastelands on sites of dead forests are common within a range from 3 km to the northeast to 10–15 km to the northwest and west and up to 25 km to the southeast of Norilsk. The development of vegetation observed during modern climate warming varies in different replacement zones of dead forests.

Keywords

industrial impact, dynamics of vegetation, mapping, satellite images

References

  1. Bauduin S., Clarisse L., Clerbaux C., Hurtmans D., Coheur P.-F. IASI observations of sulfur dioxide (SO₂) in the boundary layer of Norilsk. J. Geophys. Res. Atmos. 2014. Vol. 119. P. 4253–4263.
  2. Filipchuk A.N., Kovalev B.I. Dynamics of shrinkage of pre-tundra forests in the Norilsk industrial region. Int. symp. “Northern forests: state, dynamics, anthropogenic impact” (Moscow, July 16–26, 1990). Moscow: 1990. P. 29–37. (in Russian).
  3. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. 2017. Vol. 202. P. 18–27.
  4. Gorshkov S.P. Landscape and geoecological mapping of the Norilsk region ecological disaster. Changing the natural environment. Global and regional aspects. Ed. A.N. Gennadiev and E.V. Milanova. Moscow: Publishing House of Moscow State University, 1997. P. 148–161. (in Russian).
  5. Kapitsa A.P., Golubeva E.I., Kravtsova V.I., Krasnushkin A.V., Spektor V.A., Ris U.G., Tutubalina O.V. Methodology for diagnosing the state of anthropogenically transformed ecosystems in the Arctic—in the book: Territorial systems of nature management. Analysis and synthesis. Moscow: Publishing House of Moscow State University. 2001, P. 113–127. (in Russian).
  6. Kharuk V.I., Vinterberg K., Tsybulsky G.M., Yakhimovich A.P., Moroz S.N. Technogenic damage to the tundra forests of the Norilsk Valley. Ecology, 1996. No. 6. P. 424–429. (in Russian).
  7. Kirdyanov A.V., Myglan V.S., Pimenov A.V., Knorre A.A., Ekart A.K., Vaganov E.A. Dynamics of drying out of Siberian larch in the zone of influence of technogenic emissions from enterprises of the Norilsk industrial region. Siberian Ecological Journal, 2014. No. 6. P. 945–952. (in Russian).
  8. Korets M.A., Ryzhkova V.A., Danilova I.V. Using GIS to assess the state of terrestrial ecosystems in the Norilsk industrial region. Siberian Ecological Journal, 2014. No. 6. P. 887–902. (in Russian).
  9. Kovalev B.I. Monitoring the state of forests under the conditions of aerotechnogenic impact of the Norilsk industrial region. Forestry, 1994. No. 3. P. 42–45. (in Russian).
  10. Melnikov Yu.O., Rzhanitsyn P.V., Yakovlev A.O. Geological and ecological mapping of the scale 1:1,000,000 of the Norilsk region, sheet R-45-B, G in 1991–1995. Norilsk: Norilsk Integrated Geological Exploration Expedition, Norilsk Mining and Metallurgical Plant named after A.P. Zavenyagin”, RAO “Norilsk Nickel”, 1996. (in Russian).
  11. Onuchin A.A., Burenina T.A., Zubareva O.N., Trofimova O.V., Danilova I.V. Pollution of the snow cover in the impact zone of the enterprises of the Norilsk industrial region. Siberian Ecological Journal, 2014. No. 6. P. 1025–1037. (in Russian).
  12. Pimenov A.V., Efimov D.Yu., Pervunin V.A. Topo-ecological differentiation of vegetation in the Norilsk industrial region. Siberian Ecological Journal, 2014. No. 6. P. 923–931. (in Russian).
  13. Space methods of geoecology. Moscow: Publishing House of Moscow University, 1998. 104 p. (in Russian).
  14. Shabanov N.V., Marshall G.J., Rees W.G., Bartalev S.A., Tutubalina O.V., Golubeva E.I. 2021. Climate-driven phenological changes in the Russian Arctic derived from MODIS LAI time series 2000–2019. Environmental Research Letters. 2021. Vol. 16. No. 8. 1084009.
  15. Shevyrnogov A., Vysotskaya G., Sukhinin A., Frolikova O., Tchernetsky M. Results of analysis of human impact on environment using the time series of vegetation satellite images around large industrial centers. Advances in Space Research. 2008. Vol. 41. P. 36–40.
  16. Shishikin A.S., Abaimov A.P., Onuchin A.A. Methodology and principles of organizing studies of natural ecosystems in regions with extreme anthropogenic impact. Siberian Ecological Journal, 2014. No. 6. P. 863–871. (in Russian).
  17. Toutoubalina O.V., Rees W.G. Remote sensing of industrial impact on Arctic vegetation around Noril’sk, northern Siberia: preliminary results. International Journal of Remote Sensing., 1999. Vol. 20. P. 2979–2990.
  18. Tutubalina O.V., Golubeva E.I., Zimin M.V., Kravtsova V.I., Mikhailov N.V., Zhelezny O.M. Mapping the state of vegetation in the vicinity of the city of Norilsk using Google Earth Engine. Proceedings of the Eighteenth All-Russian Open Conference with international participation “Modern problems of remote sensing of the Earth from space” November 16–20, 2020. IKI RAS 2020. P. 373. (in Russian).
  19. Tutubalina O., Rees G. Phenological differences in vegetation near Noril’sk, North-Central Siberia, in the context of airborne pollution and climate change. UK Arctic Science Conference 2022. Durham University, 11–13 April. Abstracts. P. 19.
  20. Zheleznyy O.M., Tutubalina O.V., Kravtsova V.I. Estimation of changes in the vegetation of the Norilsk industrial region from remote data based on the analysis of trends in spectral indices. Modern problems of remote sensing of the Earth from space, 2022. Vol. 19, No. 1. P. 170–178. (in Russian).

For citation: Kravtsova V.I., Zheleznyy O.M. Vegetation dynamics of the Norilsk industrial region under the influence of aerotechnogenic and natural factors. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 325–345. DOI: 10.35595/2414-9179-2022-1-28-325-345 (in Russian)