Calculation of vegetation passability categories for vehicles based on laser scanning data

DOI: 10.35595/2414-9179-2022-1-28-314-324

View or download the article (Rus)

About the Authors

Ilya A. Rylskiy

Lomonosov Moscow State University, Faculty of Geography, World Data Center for Geography,
Moscow, 119991, Russia;
E-mail: rilskiy@mail.ru

Tatiana S. Nokelaynen

Lomonosov Moscow State University, Faculty of Geography, World Data Center for Geography,
Moscow, 119991, Russia;
E-mail: nokelta@rambler.ru

Tatiana V. Kotova

Lomonosov Moscow State University, Faculty of Geography, World Data Center for Geography,
Moscow, 119991, Russia;
E-mail: tatianav.kotova@yandex.ru

Alexandr N. Panin

Lomonosov Moscow State University, Faculty of Geography, World Data Center for Geography,
Moscow, 119991, Russia;
E-mail: alex_panin@mail.ru

Abstract

Determining the categories of vegetation passability for vehicles (in forested areas) is a very popular and technically difficult task. Its complexity increases as the area of the territory increases, while duration of works and their cost should decrease. The passability of forests is influenced by elementary characteristics such as the species composition, the diameter of the trunks, the average distance between the trunks, etc.

An example of such work is the construction of vegetation passability maps for vehicles by category. This task is in high demand during the construction of new facilities (pipelines, roads, railways) and the development of new deposits in the forest zone. One of the most promising methods of information support for solving this problem is airborne laser scanning and digital aerial photography. The disadvantage of this method (as well as all methods of remote sensing) is the practical impossibility of direct instrumental measurement of a number of vegetation parameters (despite 25 years of progress in the development of the lidar method), such as the diameter of the trunk, or its exact location. Increasing scan density, combined with the use of UAVs surveying at high angles to the vertical, allows these characteristics to be obtained at the cost of a significant decrease in productivity, an exponential increase in the cost of surveying and data processing, with little confidence in the obtained vegetation characteristics.

This paper proposes an alternative approach based on the identification of relationships between characteristics that can be directly measured from low-density laser scanning data (crown height, coverage density, range of distribution of points of laser reflections in height relative to the ground) and vegetation passability categories measured in the field conditions. The obtained results show high reliability. A positive feature of this approach is the low cost and high productivity in determining the categories of terrain passability.

Keywords

LIDAR, vegetation, remote sensing, GIS, aerial survey

References

  1. Chen Q. Airborne lidar data processing and information extraction. Photogrammetric Engineering & Remote Sensing, 2007. No. 73 (2). P. 109–112.
  2. Danilin I.M., Favorskaya M.N. Using LIDAR for modelling forest structure and DEM. Lesnaya taksacia I lesoustroystvo, 2011. No. 1–2. P. 40–47 (in Russian).
  3. Dvoriashin M.V., Skudin V.M., Korez M.A. Aerospace methods for monitoring forested areas. Krasnoyarsk: Litera-Print, 2011. 152 p. (in Russian).
  4. Gorgens E., Valbuena R., Rodriguez L. A Method for Optimizing Height Threshold When Computing Airborne Laser Scanning Metrics. Photogrammetric Engineering and Remote Sensing, 2017. V. 83. No. 5. P. 343–350. DOI: 10.14358/PERS.83.5.343.
  5. Guidance for aerial photography for cartographic purposes. Military topographic administration of High Command. Moscow, 1986. 176 p. (in Russian)
  6. Holmgren J., Persson A. Identifying species of individual trees using airborne laser scanner. Remote Sensing of Environment, 2004. V. 90. No. 4. P. 415–423. DOI: 10.1016/S0034-4257(03)00140-8.
  7. Kaplunov V.Y. Contingency of tree distribution by log and canopy diameters. Russian Journal of Forest Science, 2001, No. 3. P. 63–69. (in Russian)
  8. Kapralov E.G., Koshkarev A.V., Tikunov V.S. Fundamentals of geoinformatics. Textbook for university students in 2 books. Moscow: Akademia, 2004. 480 p. (in Russian).
  9. Korpela I. Mapping of understory lichens with airborne discrete-return LiDAR data. Remote Sensing of Environment, 2008. V. 112. No. 10. P. 3891–3897. DOI: 10.1016/J.RSE.2008.06.007.
  10. Lohr U. Digital Elevation Models by Laser Scanning: Principle and Applications. Third International Airborne Remote Sensing Conference and Exhibition, 1997. P. 174–180.
  11. Varygin K.A., Danilin I.M., Rylskiy I.A. Forest inventory and monitoring using LIDAR, aerospace imagery and global navigation systems. Proceedings of the 3rd International Practical Conference on Forest Management, 2013. Novosibirsk. P. 56–59. (in Russian).

For citation: Rylskiy I.A., Nokelaynen T.S., Kotova T.V., Panin A.N. Calculation of vegetation passability categories for vehicles based on laser scanning data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 314–324. DOI: 10.35595/2414-9179-2022-1-28-314-324 (in Russian)