Technique for interpretation of archive and recent satellite images to study the slope processes dynamics in the Geyzernaya river valley (Kamchatka)

View or download the article (Rus)

About the Authors

Elena A. Baldina

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia;

Ekaterina V. Lebedeva

Institute of Geography RAS,
Staromonetny lane, 29. 119017, Moscow, Russia;

Andrei A. Medvedev

Institute of Geography RAS,
Staromonetny lane, 29, 119017, Moscow, Russia;


Based on the database of spatial thematic data sources for the Geysernaya River valley (Kamchatka), the work was carried out to identify the areas of the greatest activation of modern exogenous processes and the manifestation of endogenous processes over the maximum possible time interval (more than 50 years). Space images of high spatial resolution (0.5–3 m), received from Key-Hole-4 (1964), GeoEye (2009), Pleiades-1A/1B (2013, 2016), WorldView-2 (2017) satellites, results of field survey and UAV imagery in 2021, literature and archive materials were used as sources. The developed interpretation technique included both sequential interpretation of preliminary geometrically coordinated multi-temporal images and their digital processing: brightness quantization, calculation of vegetation index NDVI, formation of color multi-temporal composite, which allowed to separate vegetation-covered and bare slope areas by formal features and increased the overall reliability of interpretation. Calculations based on the interpretation results determined that the proportion of the total valley area affected by modern slope processes was 10.5 % in 1964, 14.8 % in 2009, and 13 % in 2017. In the process of images interpretation, it was established that slope processes dominated on the left bank of the Geyser River, where more than 75 % of the area of all outcrops (or 10.2 % of the total studied area of the valley) was concentrated, which is apparently caused by confinement of this valley side to the caldera limiting circular fault, which preserves its activity, and also by the presence of the area of modern uplift there. On the right bank of the river, large areas are occupied by ancient large gravitational shifts, possibly associated with collapsing edges of extrusive massifs. Landslides-slides and erosion in the groundwater outlets are predominant among the modern processes here. The right bank accounts for less than 25 % of the area of all outcrops (or 3.3 % of the total study area).


endogenous and exogenous processes, image base, contours delineation, NDVI, multitemporal synthesis, GIS


  1. Atlas of the valley of the Geysernaya River in the Kronotsky Reserve. Ed. Zavadskaya A.V. Moscow: KRASAND, 2015. 88 p. (in Russian)
  2. Dvigalo V.N., Melekestsev I.V. Geological and geomorphological consequences of catastrophic landslide and landslide-landslide processes in the Kamchatka Valley of Geysers (according to aerial photogrammetry data). Volcanology and Seismology, 2009. No. 5. P. 24–37 (in Russian).
  3. Dvigalo V.N., Svirid I.Yu., Shevchenko A.V., Zharkov R.V. Monitoring and forecast of mudflow processes in the Kamchatka Valley of Geysers based on photogrammetric studies. Mudflows: catastrophes, risk, forecast, protection: Proceedings of III Int. conference Yuzhno-Sakhalinsk: Sakhalin Branch of FEGI FEB RAS, 2014. P. 105–108 (in Russian).
  4. Kugaenko Yu.A., Saltykov V.A., Sinitsyn V.I. Seismic observations in the Valley of Geysers. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences, 2007. No. 2. Issue 10. P. 171–172 (in Russian).
  5. Lebedeva E.V. Influence of gas-hydrothermal activity on the formation of the relief of river valleys of geothermal zones. Routes of evolutionary geography, 2021: Proceedings of the 2nd Scientific Conference in Memory of Prof. A.A. Velichko. Moscpw: IG RAS, 2021. P. 185–190 (in Russian).
  6. Lebedeva E.V. Types of impacts of volcanic and post volcanic activity on fluvial relief. Geomorfology, 2019. No. 4. P. 49–66 (in Russian). DOI: 10.31857/S0435-42812019449-66.
  7. Lebedeva E.V., Sugrobov V.M., Chizhova V.P., Zavadskaya A.V. River valley Geysernaya (Kamchatka): hydrothermal activity and features of relief formation. Geomorphology, 2020. No. 2. P. 60–73 (in Russian). DOI: 10.31857/S0435428120020066.
  8. Lebedeva E.V., Zharkov R.V. Accumulative landforms in valleys with gas-hydrothermal manifestations (the Kuril-Kamchatka region as an example). Geomorphology, 2022. V. 53. No. 1. P. 81–101 (in Russian). DOI: 10.31857/S0435428122010096.
  9. Lee H.Y., Kim T., Park W., Lee H.K. Extraction of digital elevation models from satellite stereo images through stereo matching based on epipolarity and scene geometry. Image and Vision Computing, 2003. V. 21. No. 9. P. 789–796.
  10. Leonov A.V. Catalog of the main objects of the Valley of Geysers (Kronotsky Reserve, Kamchatka). Moscow: IHST RAS, 2012. 217 p. Electronic edition, Reg. No. 0321200426. Web resource: (in Russian)
  11. Leonov A.V. Catalog of geysers in the Kronotsky Reserve. The Valley of Geysers and the Uzon Volcano Caldera: History and Modernity. Moscow: Publishing House LLC “Reart”, 2017. 384 p. (in Russian).
  12. Leonov V.L. The collapse and landslide that occurred on January 4, 2014 in the Valley of Geysers, Kamchatka, and their consequences. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences, 2014. No. 1. Issue. 23. P. 7–20 (in Russian).
  13. Lobkova L.E., Lobkov E.G. Environmental consequences of the landslide that occurred in the Valley of Geysers on June 3, 2007 (the first season after the natural disaster). Conservation of the biodiversity of Kamchatka and adjacent seas: Presentations of the VIII International Scientific Conference Dedicated to 275 Anniversary of the Start of the Second Kamchatka Expedition (1723–1733). Publishing House Kamchatpress, 2008. P. 114–140 (in Russian).
  14. Lundgren P., Lu Zh. Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations. Geophysical research letters. 2006. V. 33. Issue 6. DOI: 10.1029/2005GL025181.
  15. Mészáros M., Szatmári J., Tobak Z., Mucsi L. Extraction of digital surface models from CORONA satellite stereo images. Journal of Environmental Geography, 2008. V. 1. No. 1–2. P. 5–10. DOI: 10.14232/jengeo-2008-43852.
  16. Pinegina T.K., Delemen I.F., Droznin V.A., Kalacheva E.G., Chirkov S.A., Melekestsev I.V., Dvigalo V.N., Leonov V.L., Seliverstov N.I. Kamchatka Valley of Geysers after the catastrophe on June 3, 2007. Vestnik FEB RAS, 2008. No. 1. P. 33–44 (in Russian).
  17. Sohn H., Kim G-H., Yom J-H. Mathematical modelling of historical reconnaissance CORONA KH-4B imagery. The Photogrammetric Record, 2004. V. 19. Issue 105. P. 51–66. DOI: 10.1046/j.0031-868X.2003.00257.x.
  18. Zerkal O.V., Gvozdeva I.P., Frolova Yu.V. The development of landslide processes in the valley of the river Geysernaya. Geodynamic processes and natural disasters: Presentation abstracts of III All-Russian. scientific conf. with int. participants. Yuzhno-Sakhalinsk: IMG&G FEB RAS, 2019. P. 138 (in Russian).
  19. Zhukovsky M.O. Use of data from CORONA satellites in archaeological research. Brief reports of the Institute of Archeology, 2012. No. 226. P. 45–54 (in Russian).

For citation: Baldina E.A., Lebedeva E.V., Medvedev A.A. Technique for interpretation of archive and recent satellite images to study the slope processes dynamics in the Geyzernaya river valley (Kamchatka) InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 266–283. DOI: 10.35595/2414-9179-2022-1-28-266-283 (In Russian)