Cartographic support of identification of natural and man-made sources of dissolved matter in lake Baikal basin

DOI: 10.35595/2414-9179-2022-1-28-175-188

View or download the article (Rus)

About the Authors

Yury M. Semenov

V.B. Sochava Institute of geography of SB RAS,
Ulan-Batorskaya st., 1, 664033, Irkutsk, Russia;
E-mail: yumsemenov@mail.ru

Anton V. Silayev

V.B. Sochava Institute of geography of SB RAS,
Ulan-Batorskaya st., 1, 664033, Irkutsk, Russia;
E-mail: anton_s@bk.ru

Mikhail Yu. Semenov

Limnological institute of SB RAS,
Ulan-Batorskaya st., 3, 664033, Irkutsk, Russia;
E-mail: smu@mail.ru

Abstract

A method of GIS mapping was developed to identify and assess the contributions of sources of matter to the composition of surface waters. The basis for the creation of the GIS database was the results of the study of the spatial diversity of the chemical composition of surface waters. Geoinformation analysis included the creation of a digital framework for mapping, vectorization of mapping sources and Earth remote sensing materials, creation of a single database combining cartographic, statistical information and field observation materials, morphometric relief analysis based on a digital relief model, creating a landscape basis for base maps, creating thematic maps, analyzing changes in the components of geosystems, creating electronic cartographic layers allowing to identify participation of solute sources in formation of water composition. The analysis of component changes was based on the results of different-time studies of the composition of water and bottom sediments. Based on the comparison of the chemical composition of the waters of the Baikal tributaries with the chemical and mineralogical composition of rocks, an approach was developed to identify sources of solute and assess their contributions to the formation of macro- and microelement compositions of surface waters. To solve the problems of the study, methods of statistical analysis of data, multicomponent mixing using systems of linear equations, field methods of data collection were used. Three main categories of solute sources (silicate, sulfide-containing silicate, carbonate rocks) were identified and their contributions to the chemical composition of water were calculated. On the basis of microelement tracers, the contributions of silicate rocks were divided into contributions of primary and secondary silicate rocks, ore-containing silicate rocks without sulfides were isolated. By comparing the ratios of concentrations of trace elements in the waters of uncontaminated territories and wastewater of enterprises, tracers were identified that made it possible to identify sources of surface water pollution. Maps of territories that determine a certain chemical composition of surface waters were compiled, which was first classified on the basis of the ratio of the contributions of drained rocks.

Keywords

mapping, GIS, Baikal, surface water, solute, sources

References

  1. Alekin O.A. General Hydrochemistry (Chemistry of Natural Waters). Leningrad: Hydrometeorological Publishing House, 1948. 208 p. (in Russian).
  2. Borzenko S.V., Shvartsev S.L. Chemical composition of salt lakes in East Transbaikalia (Russia). Applied geochemistry, 2019. V. 103. P. 72–84. DOI: 10.1016/j.apgeochem.2019.02.014.
  3. Bucher K., Zhou W., Stober I. Rocks control the chemical composition of surface water from the high Alpine Zermatt area (Swiss Alps). Swiss Journal of Geosciences, 2017. V. 110. P. 811–831. DOI: 10.1007/s00015-017-0279-y.
  4. Durov S.A. Triangular form of graphic expression of water analysis results and its application to classification of natural waters. Hydrochemical materials, 1949. V. 17. P. 54–61 (in Russian).
  5. Falkner K.K., Church M., Measures C.I., LeBaron G., Thouron D., Jeandel C., Stordal M.C., Gill G.A., Mortlock R., Froelich P., Chan L.H. Minor and trace element chemistry of Lake Baikal, its tributaries, and surrounding hot springs. Limnology and oceanography, 1997. V. 42. No. 2 P. 329–345. DOI: 10.4319/lo.1997.42.2.0329.
  6. Falkner K.K., Measures C.I., Herbelin S.E., Edmond J.M., Weiss R.F. The major and minor element geochemistry of Lake Baikal. Limnology and oceanography, 1991. V. 36. P. 413–423. DOI: 10.4319/LO.1991.36.3.0413.
  7. Hounslow A.W. Water Quality Data: Analysis and Interpretation. Boca Raton: CRC press LLC, Lewis Publishers, 1995. 416 p. DOI: 10.1201/9780203734117.
  8. Kasimov N., Shinkareva G., Lychagin M., Kosheleva N., Chalov S., Pashkina M., Thorslund J., Jarsjö J. River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals. Water, 2020. V. 12. Issue 8: 2137. DOI: 10.3390/w12082137.
  9. Keene W.C., Pszenny A.A.P., Galloway J.N., Hawley M.E. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of geophysical research, 1986. V. 91. Issue D6. Р. 6647–6658. DOI: 10.1029/JD091ID06P06647.
  10. Kemp P.H. Chemistry of Natural Waters. Part VI. Classification of Waters. Water research, 1971. V. 5. Issue 10. P. 943–956. DOI: 10.1016/0043-1354(71)90029-7.
  11. Kuzmin M.I, Dril S.I, Sandimirov I.V, Sandimirova G.P, Geletiy V.F, Chukanova V.S, Kalmychkov G.V, Bychinsky V.A. Variations of the isotope composition Sr in the sedimentary section of Lake Baikal. Reports of the Academy of Sciences, 2007. V. 412. No. 4. P. 530–534 (in Russian). DOI: 10.1134/S1028334X07010308.
  12. Lychagin M., Chalov S., Kasimov N., Shinkareva G., Jarsjo J., Thorslund J. Surface water pathways and fluxes of metals under changing environmental conditions and human interventions in the Selenga River system. Environmental earth science, 2017. V. 76. Issue 1. DOI: 10.1007/s12665-016-6304-z.
  13. Mayer B., Shanley J.B., Bailey S.W., Mitchell M.J. Identifying sources of stream water sulfate after a summer drought in the Sleepers River watershed (Vermont, USA) using hydrological, chemical, and isotopic techniques. Appllied geochemistry, 2010. V. 25. Issue 5. P. 747–754. DOI: 10.1016/j.apgeochem.2010.02.007.
  14. Porowski A., Porowska D., Halas S. Identification of Sulfate Sources and Biogeochemical Processes in an Aquifer Affected by Peatland: Insights from Monitoring the Isotopic Composition of Groundwater Sulfate in Kampinos National Park, Poland. Water, 2019. V. 11. No. 7. P. 1388. DOI: 10.3390/w11071388.
  15. Semenov M.Yu. Indicators of the conditions for the formation of the chemical composition of river waters in the Lake Baikal basin. Geography and natural resources, 2017. No. 4. P. 170–179 (in Russian). DOI: 10.21782/GIPR0206-1619-2017-4(170-179).
  16. Semenov M.Yu., Sandimirova G.P., Korovyakova I.V., Troitskaya E.S., Khramtsova T.I., Donskaya T.V. Comparative Assessment of the rates of internal weathering in the landscapes of the northern slope of the Khamar-Daban Ridge. Geology and Geophysics, 2005. V. 46. No. 1. P. 50–59 (in Russian).
  17. Semenov M.Yu., Snytko V.A., Marinaite I.I. Research of the origin of polycyclic aromatic hydrocarbons in the water of Lake Baikal. Reports of the Academy of Sciences (Earth Sciences), 2017. V. 474. No. 6. P. 746–750 (in Russian). DOI: 10.7868/S0869565217180190.
  18. Semenov Yu.M. Landscape and geochemical synthesis and organization of geosystems. Novosibirsk: Science, 1991. 144 p. (in Russian).
  19. Sochava V.B. Introduction to the doctrine of geosystems. Novosibirsk: Science, 1978. 320 p. (in Russian).
  20. Sochava V.B, Mikheev V.S, Ryashin V.A. Overview landscape mapping based on the integration of elementary geosystems. Reports of the Institute of Geography of Siberia and the Far East, 1965. No. 10. P. 9–22 (in Russian).
  21. Solongo T, Fukushi K, Altansukh O, Takahashi Y, Akehi A, Baasansuren G, Ariuntungalag Y, Enkhjin O, Davaajargal B, Davaadorj D, Hasebe N. Distribution and Chemical Speciation of Molybdenum in River and Pond Sediments Affected by Mining Activity in Erdenet City, Mongolia. Minerals, 2018. V. 8. No. 7:288. DOI: 10.3390/min8070288.
  22. Strauch G., Schreck P., Nardin G., Gehre M. Origin and distribution of sulphate in surface waters of the Mansfeld mining district (Central Germany)—a sulphur isotope study. Isotopes in environmental health studies, 2001. V. 37. Issue 2. P. 101–112. DOI: 10.1080/10256010108033287.
  23. Stuyfzand P.J. A New Hydrochemical Classification of Water Types. Regional Characterization of Water Quality; IAHS Publication: Oxford, UK, 1989. V. 182. P. 89–98.
  24. Walter J., Chesnaux R., Cloutier V., Gaboury D. The influence of water/rock-water/clay interactions and mixing in the salinization processes of groundwater. Journal of hydrology and regional studies, 2017. V. 13. P. 168–188. DOI: 10.1016/j.ejrh.2017.07.004.

For citation: Semenov Y.M., Silayev A.V., Semenov M.Yu. Cartographic support of identification of natural and man-made sources of dissolved matter in lake Baikal basin. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 175–188. DOI: 10.35595/2414-9179-2022-1-28-175-188 (in Russian)