New technologies for modern geoinformatics

DOI: 10.35595/2414-9179-2022-1-28-5-34

View or download the article (Rus)

About the Authors

Olga I. Markova

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow, Russia;
E-mail: solntsevaolga1401@gmail.com

Vladimir S. Tikunov

Lomonosov Moscow State University, Faculty of Geography,
Leninskie Gory 1, 119991, Moscow;

Sevastopol State University,
Universitetskaya st. 33, 299 053, Sevastopol, Russia;

E-mail: vstikunov@yandex.ru

Abstract

The article is devoted to new information technologies that are already in use or are promising for use in geoinformatics and geographical research. The historical moments of development, technical characteristics, areas of use, features of application in the geographic branch of research of the main information technologies that have become popular in recent decades, as well as their shortcomings are considered. The technologies of mobile Internet, social networks, big data, social data mining, cloud technologies, blockchain, artificial intelligence, machine learning, neural networks, virtual and augmented reality, robotization, use of unmanned aerial vehicles, infographics, multimedia, images in non-Euclidean metrics, distance learning and distance education are described sequentially with the disclosure of the main features and components. The analysis and generalization of new information technologies designed to improve the quality of geographical research in the study of nature, ecology, environmental protection, socio-economic phenomena are carried out. The materials are arranged in the order of the relatedness of technologies to each other. The texts are illustrated with associative digitally created pictures. The considered technologies are summarized in the table, which presents the advantages of technologies, features of their application in geography and geoinformatics, as well as disadvantages, including social and environmental problems. The article notes that new technologies are promising in terms of the concentration of large amounts of data, their analysis, building models of geographical phenomena, their dynamics and forecast. Powerful technologies continue to develop and improve in the directions of increasing the speed and quality of information processing, delivering it to the user, reducing in size, reducing the cost and improving hardware. Information technologies are capable of changing a real person, socio-cultural reality, biotechnological evolution is taking place. The environmental problems of the world are intensifying: electricity consumption is growing, CO₂ emissions are increasing and the greenhouse effect is increasing, the amount of electronic waste is growing with the imperfection and environmental unsafety of its processing technology.

Keywords

databases, geoinformatics, information systems, scientific and technological progress, new information technologies

References

  1. Andreev A.A., Soldatkin V.I. Distance learning: essence, technology, organization. Moscow: Publishing House of the Moscow University of Economics, Statistics and Informatics, 1999. 196 p.
  2. Andryukhina T.N. Distance learning at university. Vestnik of Samara State Technical University. Series: Psychological and Pedagogical Sciences, 2015. No. 2 (26). P. 6–10 (in Russian, abs English).
  3. Artiukhov A.A. On some aspects of the theory and practice of organizing distance learning in primary school geography lessons. International Research Journal, 2021. No. 5 (107). Part 4. P. 49–55. DOI: 10.23670/IRJ.2021.107.5.111 (in Russian, abs English).
  4. Azuma R.T. A Survey of Augmented Reality. Teleoperators and Virtual Environments 6, 1997. No. 4. P. 355–385.
  5. Bakaldin E.Yu. Cloud computing: an ambiguous weather forecast in the market. Russian Journal of Education and Psychology. Modern Research of Social Problems, 2013. No. 6 (26). Web resource: https://cyberleninka.ru/article/n/oblachnye-tehnologii-neodnoznachnyy-prognoz-pogody-na-rynke (accessed 26.10.2021). DOI: 10.12731/2218-7405-2013-6-7 (in Russian, abs English).
  6. Barnes J.A. Class and committees in a Norwegian Island Parish. Human Relations, 1954. V. 7. P. 39–58.
  7. Batura T.V., Murzin F.A., Semich D.F. Cloud technologies: basic models, applications, concepts and development tendencies. Software & Systems, 2014. No. 3 (107). P. 64–72 (in Russian, abs English).
  8. Berestova T.F. What is hidden behind the “metadata” term? Culture and Arts Herald, 2017. No. 1 (49). P. 7–11 (in Russian, abs English).
  9. Bobrova M.V., Mastilin A.E. Machine learning in cybersecurity. Scientific Interdisciplinary Research, 2021. No. 2. P. 24–29 (in Russian, abs English).
  10. Burkaltseva D.D. Points of Economic and Innovative Growth: A Model for Organizing the Effective Functioning of the Region. MIR (Modernization. Innovation. Research), 2017. V. 8. No. 1. P. 8–30. DOI: 10.18184/2079-4665.2017.8.1.8-30 (in Russian, abs English).
  11. Chereshnia O.Yu. Environmental load from use of blockchain technology and cryptocurrency mining in Russia. InterCarto. InterGIS. Proceedings of International Conference, 2021. V. 27. Part 1. P. 238–248. DOI: 10.35595/2414-9179-2021-1-27-238-248.
  12. Cherkasov D.Yu., Ivanov V.V. Machine learning. Science, technology and education, 2018. No. 5 (46). P. 85–87 (in Russian, abs English).
  13. Cherkasov K.V., Chistyakova N.S., Chernov V.V. Application of augmented reality in education. Problems of pedagogy, 2017. No. 1 (24). P. 40–41 (in Russian).
  14. Cherkasov K.V., Chistyakova N.S., Chernov V.V. Controversial issues of distance education. Problems of pedagogy, 2017. No. 1 (24). P. 41–42 (in Russian).
  15. Chernysheva A.V., Boychenko T.A., Reznichenko G.A. Virtual reality in science and technology. Humanities Bulletin of BMSTU, 2015. No. 8 (34). 8 p. DOI: 10.18698/2306-8477-2015-8-282. Web resource: http://www.hmbul.ru/catalog/hum/phil/282.html (accessed 22.10.2021) (in Russian, abs English).
  16. Dmitriev P. Reincarnation of CDMA. Networks/Networkworld. Open Systems, 2003. No. 16–17. Web resource: https://www.osp.ru/nets/2003/16-17/150320 (accessed 07.10.2021) (in Russian).
  17. Eiriyan G.N. Drones: A View in the Context of Land Legislation. Lex russica, 2020. V. 73. No. 10. P. 63–72. DOI: 10.17803/1729-5920.2020.167.10.063-072 (in Russian, abs English).
  18. Elkhova O.I. Cyborg as a result the process of human evolution. Herald of USATU, 2014. V. 18. No. 5 (66). P. 118–121 (in English).
  19. Eremin N.A., Stepanyan A.A., Stolyarov V.E. Oil and gas asset management in the era of storage and processing technologies for big amounts of data. Automation, Telemechanization and Communication in the Oil Industry, 2019. No. 12 (557). P. 5–14. DOI: 10.33285/0132-2222-2019-12(557)-5-14 (in Russian).
  20. Expert systems. Operating principles and examples. Moscow: Radio and Communication, 1987. 224 p. (in Russian).
  21. Fedotova V.V., Emelyanov B.G., Tipner L.M. The concept of blockchain and the possibility of using it. European science, 2018. No. 1 (33). P. 40–48 (in Russian, abs English).
  22. Geron O. Applied Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems. Translation from English. St. Petersburg: Alpha book, 2018. 688 p. (in Russian).
  23. Glukhov N.I., Voloshina P.S. Research of the legislation of the Russian Federation in the field of cloud technologies. Academy, 2017. No. 6 (21). V. 2. P. 79–83 (in Russian).
  24. Gribok M.V. Air pollution from stationary sources: analysis of visualization capabilities using interactive infographics. InterCarto. InterGIS. Proceedings of International Conference, 2021. V. 27. Part. 2. P. 315–326. DOI: 10.35595/2414-9179-2021-2-27-315-326 (in Russian, abs English).
  25. Gribok M.V. Geotagged Photos on the Internet as a Data Source for Geographic Research. Izvestia RAN. Seriya Geograficheskaya (Proceedings of the Russian Academy of Sciences. Geographical series), 2020. V. 84. No. 3. P. 461–469. DOI: 10.31857/S2587556620030061 (in Russian, abs English).
  26. Gribok M.V., Prokhorova E.A. Development of animated infographics as a new direction in the training of students-cartografers. InterCarto. InterGIS. Proceedings of International Conference, 2020. V. 26. Part 1. P. 400–409. DOI: 10.35595/2414-9179-2020-1-26-400-409 (in Russian, abs English).
  27. Gulyaeva I.I., Muradova G.G. Ecological footprint of cell phones. Web resource: https://school-science.ru/5/1/35587 (accessed 20.04.2022) (in Russian).
  28. Hinton G.E., Osindero S., Teh Y.-Wh. A Fast-Learning Algorithm for Deep Belief Nets. Neural Compulation, 2006. No. 18. P. 1527–1554.
  29. Huseyn-Zade S.M., Tikunov V.S. Anamorphoses: what is it? Moscow: Editorial URSS, 1999. 168 p. (in Russian).
  30. Javornik A., Marder B., Warlop L., Mizzetti M. “I am not me”: why augmented reality is dangerous. Harvard Business Review Russia. Web resource: https://hbr-russia.ru/innovatsii/issledovaniya/ya-ne-ya-chem-opasna-dopolnennaya-realnost/ (accessed 04.22.2022) (in Russian).
  31. Kapralov E.G., Koshkarev A.V., Tikunov V.S., Zavarzin A.V., Lurie I.K., Rylsky I.A., Trofimov A.M., Fleis M.E., Yarovykh V.B. Fundamentals of Geoinformatics. Textbook for universities. In 2 books. Book 1. Moscow: Academy, 2004. 352 p. (in Russian).
  32. Kolesov V.A. Using blockchain technology in the educational process to protect intellectual property. Distance educational technologies. Proceedings of the II All-Russian Scientific and Practical Internet Conference, 2017. P. 343–347 (in Russian).
  33. Kulikov A.S., Mavlyutov A.R., Mavlyutov A.R. Application of augmented reality in GIS. Herald of Science and Education, 2019. No. 2 (56). Part. 2. P. 25–28 (in Russian, abs English).
  34. Kumar A., Sangwan S.R., Nayyar A. Multimedia Social Big Data: Mining. Multimedia Big Data Computing for IoT Applications. Concepts, Paradigms and Solutions. Intelligent Systems Reference Library (ISRL). V. 163. Singapore: Springer, 2020. P. 289–321. DOI: 10.1007/978-981-13-8759-3_11.
  35. Kurbanov Z.M. Cloud technologies: overview and application. Herald of Science and Education, 2019. No. 4 (58). P. 55–60 (in Russian, abs English).
  36. Laptev V.V. Infographics: basic concepts and definitions. Society. Communication. Education. St. Petersburg State Polytechnical University Journal. Humanities and Social Sciences, 2013. No. 4 (184). P. 180–187 (in Russian, abs English).
  37. Leonov A.K. Analysis of Sociological Data (Qualitative Paradigm): Textbook. Blagoveshchensk: Publishing House of the Amur State University, 2019. 137 p. (in Russian).
  38. Lobodenko L.K. Online media content in the information-communication system of the region. Bulletin of the South Ural State University. Series Linguistics, 2015. V. 12. No. 2. P. 33–38 (in Russian, abs English).
  39. Lurie I.K. Fundamentals of Geoinformatics. Moscow: KDU, 2008. 424 p. (in Russian).
  40. Lurie S. EDGE technology: what is it and why is it needed? iXBT.com, 2006. Web resource: https://www.ixbt.com/mobile/itogi2006/edge.shtml (accessed 07.10.2021) (in Russian).
  41. Malanov A. 9 problems of machine learning. Kaspersky Blog, 2018. Web resource: https://www.kaspersky.ru/blog/machine-learning-ten-challenges/21193/ (accessed 04.07.2022) (in Russian).
  42. Malygina Yu.P. Neural networks: features, trends, development prospects. Young explorer of Don, 2018. No. 5 (14). P. 79–82 (in Russian, abs English).
  43. Mathematical encyclopedic dictionary. Moscow: Soviet encyclopedia, 1988. 847 p. (in Russian).
  44. Mell P., Grance T. The NIST Definition of Cloud Computing. Recommendations of the National Institute of Standards and Technology. Gaithersburg, 2011. 7 p. Web resource: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf (accessed 27.10.2021).
  45. Moreno J.L. Sociometry: An Experimental Method and the Science about Society. Moscow: Academic Project, 2004. 320 p. (in Russian).
  46. Mosyagin A.B. Using the Data Mining methodology when solving problems of processing social data. Monitoring of Public Opinion: Economic and Social Changes Journal (Public Opinion Monitoring), 2015. No. 2 (126). P. 143–145 (in Russian).
  47. Movchan V.N., Shmakov I.A. On the impact of cellular base stations on the ecological situation in a large city. International Journal of Applied and Basic Research, 2016. No. 5-3. Р. 426–428 (in Russian).
  48. Nazarenko Yu.L. Technology review “Big Data” and software facilities applicable for it analysis and processing. European science, 2017. No. 9 (31). P. 25–30 (in Russian, abs English).
  49. Newsom D., Haynes J. Public Relations Writing: Form & Style. Cengage Learning, 2010. 448 p.
  50. Neretin D. Infographics—what is it: simple and with examples. In-scale. Blog about marketing. Web resource: https://in-scale.ru/blog/infografika-chto-eto/ (accessed 04.07.2022).
  51. Patarakin E.D. Social services Web 2.0 to help the teacher: teaching aid, 2nd ed. Moscow: Intuit.ru, 2007. 64 p. (in Russian).
  52. Pavlov K.V. The use of non-Euclidean metrics in economic, mathematical and statistical research (or on the formation of non-Euclidean economics and non-Euclidean statistics). Russia: trends and development prospects. Mathematics, 2018. P. 879–881 (in Russian).
  53. Peshkova I. Robots: what they are and what they are. Rusbase, 2020. Web resource: https://rb.ru/story/robotics-dictionary/ (accessed 07.10.2021) (in Russian).
  54. Petit J.-P. What are the robots thinking about? Moscow: Mir, 1987. 79 p. (in Russian).
  55. Poletaeva N.G. Classification of machine learning systems. IKBFU’s Vestnik. Physics, mathematics, and technology, 2020. No. 1. P. 5–22 (in Russian).
  56. Popov E.P., Medvedev V.S. Robots and computers. Moscow: Znanie, 1985. 63 p. (in Russian).
  57. Preimesberger Ch. Hadoop, Yahoo, “Big Data” Brighten BI Future. EWeek, 2011. 15 August. P. 1–6. Web resource: https://www.eweek.com/c/a/Data-Storage/TBA-Hadoop-Yahoo-Big-Data-Brightens-BI-Future-254079/ (accessed 12.10.2021).
  58. Pyannikov M.M. On the question of the concepts of “distance learning” and “distance education”. Humanitarian Vector, 2010. No. 1. P. 41–45 (in Russian, abs English).
  59. Rule T.A. Airspace in an age of drones. Boston University Law Abstract, 2015. V. 95. P. 155–208.
  60. Ruseev S. WAP. Technology and applications. The most complete guide. St. Petersburg: BHV-Petersburg, 2001. 432 p. (in Russian).
  61. Rylsky I.A., Markova O.I., Eremchenko E.N., Panin A.N. Aspects of improving labor productivity when using UAVs optimized for high-precision mapping. Modern innovations, 2020. No. 2 (36). P. 52–55 (in Russian).
  62. Sadigova T.S. Social and psychological function of social networks. Science Vector of Togliatti State University, 2012. No. 3 (10). P. 192–194 (in Russian, abs English).
  63. Sergeev P.V. Experience of virtual reconstruction and computer animation of the lost temples-monuments. Architecture and Modern Information Technologies, 2013. No. 4 (25). 26 p. Web resource: https:// marhi.ru/AMIT/2013/4kvart13/sergeev/abstract.php (accessed 22.10.2021) (in Russian, abs English).
  64. Sheremetyeva T.L. Mobile Internet resources. Minsk: Harvest, 2003. 208 p. (in Russian).
  65. Simakova S.I., Enbayeva A.P. Interactive infographic in the typology of the infographic content. Sign: the problem field of media education, 2018. No. 1 (27). P. 129–136 (in Russian, abs English).
  66. Simmel G. Favorites. V. 2. Contemplation of life. Moscow: Jurist, 1996. 607 p. (in Russian).
  67. Smirnov A.V. What is multimedia? Science and School, 2006. No. 4. P. 54–56 (in Russian).
  68. Takhirov B.N. Virtual reality concept. Science, Education and Culture, 2020. No. 8 (52). P. 12–14 (in Russian).
  69. Tikunov V.S. Research in artificial intelligence and expert systems in geography. Moscow University Bulletin. Series 5, Geography, 1989. No. 6. P. 3–9 (in Russian).
  70. Trushko E.G., Shpakovsky Yu.F. Infographics as a modern way of information presentation. Proceedings of BSTU. Series 4: Print and Media Technologies, 2017. No. 1. P. 111–117 (in Russian, abs English).
  71. Vasiliev A.P., Abramov A.Kh. Artificial intelligence based on neural networks. Academy, 2018. No. 5 (32). P. 15–17 (in Russian).
  72. Vlasov A.I., Novikov P.V., Rivkin A.M. Features of planning air traffic using weather maps constructed with application of the Big Data technologies. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2015. No. 6. P. 46–62. DOI: 10.18698/0236-3933-2015-6-46-62 (in Russian, abs English).
  73. Vishnyakov A.S., Makarov A.E., Utkin A.V., Zazhogin S.D., Bobrov A.V. Modern approaches to the development of cloud storage services. Science and Education Today, 2019. No. 7 (42). P. 13–19 (in Russian).
  74. Voronkin A.S. Social networks: evolution, structure, analysis. Educational Technology and Society, 2014. V. 17. No. 1. P. 650–675 (in Russian).
  75. Yablokov V.M., Tikunov V.S. Atlas information systems for sustainable development of territories. InterCarto. InterGIS. Proceedings of International Conference, 2016. V. 22. Part 1. P. 13–33. DOI: 10.24057/2414-9179-2016-1-22-13-33 (in Russian, abs English).
  76. Zaitsev V.S. Multimedia technologies in education: modern discourse. Chelyabinsk: Publishing House of CJSC “A. Miller Library”, 2018. 30 p. (in Russian).
  77. Zykova S. 8 predictions by Robert Skoubl about the future of AR/VR technology. Rusbase, 2017. 23 August. Web resource: https://rb.ru/story/ar-vr-predictions/ (accessed 10.22.2021) (in Russian).

For citation: Markova O.I., Tikunov V.S. New technologies for modern geoinformatics. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 5–34. DOI: 10.35595/2414-9179-2022-1-28-5-34 (in Russian)