Comparison of spectro-biophysical and yield parameters of cotton in irrigated lowlands of Amudaria River

DOI: 10.35595/2414-9179-2020-3-26-294-308

Посмотреть или загрузить статью (Eng)

Об авторах

Shavkat Kenjabaev

Scientific Information Center Interstate Coordination Water Commission (SIC ICWC),
B-11a, Karasu-4, 100187, Tashkent, Uzbekistan,
E-mail: kenjabaev@yahoo.com

Christopher Conrad

Institute of Geosciences and Geography, Martin-Luther-University Halle,
Von-Seckendorff-Platz, 4, 06120, Halle, Germany,
E-mail: christopher.conrad@geo.uni-halle.de

Odilbek Eshchanov

Scientific Information Center Interstate Coordination Water Commission (SIC ICWC),
B-11a, Karasu-4, 100187, Tashkent, Uzbekistan,
E-mail: odilbek.icwc@mail.ru

Aybek Arifjanov

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME),
Kary Niyaziy, 39, 100000, Tashkent, Uzbekistan,
E-mail: obi-life@mail.ru

Dilbar Abduraimova

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME),
Kary Niyaziy, 39, 100000, Tashkent, Uzbekistan,
E-mail: abduraimova.dilbar@mail.ru

Umida Voxidova

Tashkent Institute of Textile and Light Industry, Tashkent city,
Shohjahon str., 5, Near Uzpromstroybank, 100100, Tashkent, Uzbekistan,
E-mail: voxidova.umida@mail.ru

Аннотация

This study aims defining the best predictors of biophysical parameters and yield with vegetation indices derived from Landsat 8 OLI surface reflectance data. The study was conducted in 2015 at five crop fields in Kulavat canal irrigation system in Khorezm province, Uzbekistan. The Environment for Visualizing Images (ENVI) ver. 4.5 and R programming software ver. 1.0.143 were used to process, calculate seven vegetation indices (VIs) and predict biophysical parameters and yield of cotton.

The trend analysis show that in-situ measured biophysical parameters for the whole growth stage of cotton follows the 3rd order polinomial curve (R2 = 0.96-0.99). The NDVI, SAVI, TVI and RVI had linear interrelationship between each other with strong positive correlation of R2>0.9 (highly significant with p-value=0). The VIs showed a logarithmic function relationship with crop height (crht), power function relationship with green biomass (gbm) and leaf area index (LAI), and linear function relationship with the fraction of photosyntetically active radiation below the plant canopy (FPAR) during the entire growing period of cotton. Among seven VIs tested in this study, the NDVI/SAVI and GCI explained 88 and 91 % of variation in crht, respectively. These three indices also well explained gbm variation (R2=0.86). The TVI was slightly better explained FPAR than NDVI and SAVI (all R2>0.87). The NDVI, SAVI and TCG explained 82 % of variation in LAI. Among all VIs, GCI, NDGI and RVI were found to be the best predictor of cotton yield during August, explaining 76-79 % variability (p<0.001).

Based on spectro-biophysical analysis, VIs derived from RS data on July and August (anthesis and peak growth stages of cotton) is more reliable to use for modeling cotton yield (seed and lint yields together). Therefore, field data collection is recommended to perform during these months taking into account in-field crop condition and remotely sensed data acquisition date. In addition, September 5-20 is the second important period (i.e., cotton pick-up) to conduct yield data collection for establishment of relationships between cotton yields with VIs (July-August).

Ключ. слова

remote sensing, GIS, spectro-biophysical parameters, yield, cotton

Список литературы

  1. Anderson G.L., Hanson J.D., Haas R.H. Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above ground biomass on semiarid rangelands. Remote Sensing of Environment, 1993. V. 45. P. 165–175.
  2. Babar M.A., van Ginkel M., Klatt A.R., Prasad B., Reynolds M.P. The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica, 2006. V. 150. P. 155–172.
  3. Baig M., Zhang L., Shuai T., Tong T. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 2014. V. 5. P. 423–431.
  4. Brandão Z., Sofiatti V., Bezerra J., Ferreira G., Medeiros J. Spectral reflectance for growth and yield assessment of irrigated cotton. Australian Journal of Crop Science, 2015. V. 9. P. 75–84.
  5. Chamard P., Courel M.F., Ducousso M., Guénégou M.C., Le Rhun J., Levasseur J.E., Loisel C., Togola M. Utilisation des bandes spectrales du vert et du rouge pour une meilleure évaluation des formations végétales actives. Télédétection et Cartographie, Éd. AUPELF-UREF, 1991. P. 203–209 (in French).
  6. Djanibekov N. Introducing water pricing among agricultural producers in Khorezm, Uzbekistan: An economic analysis. Environmental Problems of Central Asia and their Economic, Social and Security Impacts. Springer Netherlands, 2008. P. 217–240.
  7. Gitelson A.A., Viña A., Arkebauer T.J., Rundquist D.C., Keydan G., Leavitt B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 2003. V. 30. No 1248. DOI: 10.1029/2002GL016450.
  8. Gutierrez M., Norton R., Thorp K.R., Wang G. Association of spectral reflectance indices with plant growth and lint yield in upland cotton. Crop Science, 2012. V. 52. P. 849–857.
  9. Huete A.R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988. V. 25. P. 295–309.
  10. Jackson R.D., Huete A.R. Interpreting vegetation indices. Preventive Veterinary Medicine, 1991. V. 11. P. 185–200.
  11. Jordan C.F. Derivation of leaf-area index from quality of light on forest floor. Ecology, 1969. V. 50. P. 663–666.
  12. Knipling E.B. Physical and physiological basis for the reflectance of visible and near- infrared radiation from vegetation. Remote Sensing of Environment, 1970. V. 1. P. 155–159.
  13. Löw F., Duveiller G. Defining the spatial resolution requirements for crop identification using optical remote sensing. Remote Sensing, 2014. V. 6. P. 9034–9063.
  14. Perry C.R., Lautenschlager L.F. Functional equivalence of spectral vegetation indices. Remote Sensing of Environment, 1984. V. 14. P. 169–182.
  15. Pettorelli N. The normalized difference vegetation index. New York: Oxford University Press, 2013. 194 p.
  16. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium, NASA SP-351. Washington, DC: NASA, 1973. V. 1. P. 309–317.
  17. Schluter M., Khasankhanova G., Talskikh V., Taryannikova R., Agaltseva N., Joldasova I., Ibragimov R., Abdullaev U. Enhancing resilience to water flow uncertainty by integrating environmental flows into water management in the Amudarya River, Central Asia. Global and Planetary Change, 2013. V. 110. P. 114–129.
  18. Thenkabail P.S. Biophysical and yield information for precision farming from near-real-time and historical Landsat TM images. International Journal of Remote Sensing, 2003. V. 24. P. 2879–2904.
  19. Tucker C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 1979. V. 8. P. 127–150.

Для цитирования: Kenjabaev Sh., Conrad Ch., Eshchanov O., Arifjanov A., Abduraimova D., Voxidova U. Comparison of spectro-biophysical and yield parameters of cotton in irrigated lowlands of Amudaria River. ИнтерКарто. ИнтерГИС. Геоинформационное обеспечение устойчивого развития территорий: Материалы Междунар. конф. M: Издательство Московского университета, 2020. Т. 26. Ч. 3. С. 294–308 DOI: 10.35595/2414-9179-2020-3-26-294-308

For citation: Kenjabaev Sh., Conrad Ch., Eshchanov O., Arifjanov A., Abduraimova D., Voxidova U. Comparison of spectro-biophysical and yield parameters of cotton in irrigated lowlands of Amudaria River. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 3. P. 294–308. DOI: 10.35595/2414-9179-2020-3-26-294-308