Sentinel-1 SAR interferometry for agriculture: description of an experiment in Oryol, Russia

DOI: 10.35595/2414-9179-2020-3-26-124-131

Посмотреть или загрузить статью (Eng)

Об авторах

Giovanni Nico

Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo,
Via Amendola, 122/O, 70126, Bari, Italy,

Saint Petersburg State University, Earth Institute, Department of Cartography and Geoinformatics,
10th line VI, 33, 199178, Saint Peterburg, Russia,

Lyubov N. Trofimetz

Oryol State University, Institute of Natural Sciences and Biotechnology, Department of Geography, Ecology and General Biology,
Komsomolskaya str., 95, 302026, Oryol, Russia,

Olimpia Masci

DIAN s.r.l.,
Via Ferruccio Parri, 44, 75100, Matera, Italy,


In this work we describe an experiment to be carried out in the basin of Suhaya Orlitsa river (Oryol region, central part of European Russia) to compare in-situ measurements of soil moisture with estimates obtained using Synthetic Aperture Radar (SAR) interferometry. The Sentinel-1 mission of the European Space Agency (ESA), acquiring C-band SAR images regularly over all Earth regions since 2014 with a mean revisiting time of 6 days, is used. In-situ measurements of soil moisture are planned in a time interval of 3 hours in coincidence of each Sentinel-1 passage, using a temporal sampling of 15 minutes. Test measurements are planned at the end of the month of April, when the soil accumulates water. The aim of the experiment is to demonstrate the feasibility of using Sentinel-1 images to densify the network of in-situ measurements of soil moisture on the territory of Russia. The application of SAR interferometry is investigated as it requires less in-situ measurements than methods based on the use of radar cross-section and the inversion of models of electromagnetic scattering from natural surfaces. Examples of interferometric coherence and phase images obtained by processing Sentinel-1 images acquired on 20th September 2019 and 2nd October 2019 over the study area are shown.

Ключ. слова

Synthetic Aperture Radar (SAR), SAR Interferometry (InSAR), soil moisture, Sentinel-1

Список литературы

  1. Beale J., Snapir B., Waine T., Evans J., Corstanje R. The significance of soil properties to the estimation of soil moisture from C-band synthetic aperture radar. Hydrology and Earth system sciences, 2019. V. 294. P. 1–32. DOI: 10.5194/hess-2019-294.
  2. Borodina I.A., Kizhner L.I., Bogoslovskiy N.N., Erin S.I., Rudikov D.S. Defining characteristics of soil moisture from meteorological satellites. Tomsk State University Journal, 2014. No 380. P. 181–184 (in Russian).
  3. Chen K.S., Fung A.K. A comparison of backscattering models for rough surfaces. IEEE Transactions on Geoscience and Remote Sensing, 1995. V. 33. Iss. 1. P. 195–200. DOI: 10.1109/36.368209.
  4. Conde V., Catalão J., Nico G. Field observations of temporal variations of surface soil moisture: comparison with InSAR Sentinel-1 data. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 2018. Art. No 8517510. P. 6131–6134. DOI: 10.1109/IGARSS.2018.8517510.
  5. Conde V., Catalão J., Nico G., Benevides P. High resolution mapping of soil moisture in agriculture based on Sentinel-1 interferometric data. Proceedings of SPIE — the International Society for Optical Engineering, 2018. 10783. Art. No 107831U. DOI: 10.1117/12.2325709.
  6. Conde V., Nico G., Catalao J. Comparison of in-field measurements and InSAR estimates of soil moisture: inversion strategies of interferometric data. Proceedings of the International Geoscience and Remote Sensing symposium (IGARSS), 2019. Art. No 8899855. P. 6186–6189. DOI: 10.1109/IGARSS.2019.8899855.
  7. De Zan F., Parizzi A., Prats-Iraola P., López-Dekker P. A SAR Interferometric model for soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 2014. V. 52. Iss. 1. P. 418–425. DOI: 10.1109/TGRS.2013.2241069.
  8. De Zan F., Zonno M., López-Dekker P. Phase inconsistencies and multiple scattering in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2015. V. 53. Iss. 12. P. 6608–6616. DOI: 10.1109/TGRS.2015.2444431.
  9. De Zan F., Gomba G. Vegetation and soil moisture inversion from SAR closure phases: first experiments and results. Remote Sensing of Environment, 2018. V. 217. P. 562–572. DOI: 10.1016/j.rse.2018.08.034.
  10. Franceschetti G., Iodice A., Migliaccio M., Riccio D. Fractals and the small perturbation scattering model. Radio Science, 1999. V. 34. Iss. 5. P. 1043–1054. DOI: 10.1029/1999RS900053.
  11. Fung A.K. Microwave Scattering and emission models and their applications. Norwood, MA: Arthech House, 1994.
  12. Gruber A., Zwieback S., Crow W., Dorigo W., Wagner W. Recent advances in (soil moisture) triple collocation analysis. International Journal of Applied Earth Observation and Geoinformation, 2016. V. 45. P. 200–211. DOI: 10.1016/j.jag.2015.09.002.
  13. Khabbazan S., Vermunt P., Steele-Dunne S., Arntz L.R., Marinetti C., van der Valk D., Iannini L., Molijn R., Westerdijk K., van der Sande C. Crop monitoring using Sentinel-1 data: A case study from The Netherlands. Remote Sensing, 2019. V. 11. P. 1887. DOI: 10.3390/rs11161887.
  14. Liu C., Chen Shao Y., Chen J., Tuya H., Pan H. Research advances of SAR remote sensing for agriculture applications: a review. Journal of Integrative Agriculture, 2019. V. 18. Iss. 3. P. 506–525. DOI: 10.1016/S2095-3119(18)62016-7.
  15. Massonnet D., Feigl K.L. Radar interferometry and its application to changes in the Earth’s surface. Review of Geophysics, 1998. V. 36. Iss. 4. P. 441–500. DOI: 10.35595/2414-9179-2019-2-25-217-231.
  16. Mattia F., Le Toan T. Backscattering properties of multi-scale rough surface, Journal of Electromagnetic Waves Applications, 1999. V. 13. Iss. 4. P. 491–526. DOI: 10.1163/156939399X00240.
  17. Mattia F., Le Toan T., Picard G., Posa F., D’Alessio A., Notarnicola C., Gatti A.M., Rinaldi M., Satalino G., Pasquariello G. Multitemporal C-band radar measurements on wheat fields. IEEE Transactions on Geoscience and Remote Sensing, 2003. V. 41. Iss. 7. P. 1551–1560. DOI: 10.1109/TGRS.2003.813531.
  18. Ouellette J.D., Johnson J.T., Balenzano A., Mattia F., Satalino G., Kim S.B., Scott R., Colliander A., Cosh M.H., Caldwell T.G., Walker J.P., Berg A.A. A time-series approach to estimating soil moisture from vegetated surfaces using L-band radar backscatter. IEEE transactions on geoscience and remote sensing, 2017. V. 55. Iss. 6. P. 3186–3193. DOI: 10.1109/TGRS.2017.2663768.
  19. Pichierri M., Hajnsek I., Zwieback S., Rabus B. On the potential of polarimetric SAR interferometry to characterize the biomass, moisture and structure of agricultural crops at L-, C-and X-Bands. Remote Sensing of Environment, 2018. V. 204. P. 596–616. DOI: 10.1016/j.rse.2017.09.039.
  20. Panidi E., Trofimetz L., Sokolova J. Application of phyto-indication and radiocesium indicative methods for microrelief mapping. IOP Conference Series: Earth and Environmental Science, 2016. V. 34. Iss. 1. Art. No 012024. DOI: 10.1088/1755-1315/34/1/012024.
  21. Trofimetz L.N., Panidi E.A., Chaadaeva N.N., Sankova E.A., Ivaneha T.L., Petelko A.I. Estimation of soil loss in the thalwegs of natural-anthropogenic streams generated by heavy rainfall on arable slopes: application of satellite imagery, GIS and radiocaesium method. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2019. V. 25. Part 1. P. 217–231. DOI: 10.35595/2414-9179-2019-2-25-217-231 (in Russian, abs English).
  22. Tsang L., Kong J.A., Ding K.H. Scattering of electromagnetic waves: theory and applications, New York: John Wiley and Sons, 2001 (a).
  23. Tsang L., Kong J.A., Ding K.H. Scattering of electromagnetic waves: theory and applications, JNew York: John Wiley and Sons, 2001 (b).
  24. Zhou T., Pan J., Zhang P., Wei S., Han T. Mapping winter wheat with multi-temporal SAR and optical images in an urban agricultural region. Sensors, 2017. V. 17. Art. No 1210. DOI: 10.3390/s17061210.
  25. Zwieback S., Hensley S., Hajnsek I. Assessment of soil moisture effects on L-band radar interferometry. Remote Sensing of Environment, 2015. V. 164. P. 77–89. DOI: 10.1016/j.rse.2015.04.012.
  26. Zwieback S., Hensley S., Hajnsek I. Soil moisture estimation using differential radar interferometry: toward separating soil moisture and displacements. IEEE Transactions on Geoscience and Remote Sensing, 2017. V. 55. Iss. 9. P. 5069–5083. DOI: 10.1109/TGRS.2017.2702099.

Для цитирования: Nico G., Trofimetz L.N., Masci O. Sentinel-1 SAR interferometry for agriculture: description of an experiment in Oryol, Russia. ИнтерКарто. ИнтерГИС. Геоинформационное обеспечение устойчивого развития территорий: Материалы Междунар. конф. M: Издательство Московского университета, 2020. Т. 26. Ч. 3. С. 124–131 DOI: 10.35595/2414-9179-2020-3-26-124-131

For citation: Nico G., Trofimetz L.N., Masci O. Sentinel-1 SAR interferometry for agriculture: description of an experiment in Oryol, Russia. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 3. P. 124–131. DOI: 10.35595/2414-9179-2020-3-26-124-131