Changes and variations of the terrestrial water storage anomaly over the core area of the Silk Road

DOI: 10.35595/2414-9179-2019-2-25-28-33

Посмотреть или загрузить статью (Eng)

Об авторе

Qiming Zhou

Hong Kong Baptist University,
Baptist University Road, 15, Kowloon Tong, Hong Kong, China,


Terrestrial water storage (TWS) plays important role in the food supplies, human and ecosystem health in the world, especially in the arid regions. Therefore, in this study, the changes and variabilities of the TWS anomaly (TWSA) derived from the Gravity Recovery and Climate Experiment (GRACE) satellite dataset are explored over the arid regions of Central Asia during 2003–2014. The total monthly TWSA is decomposed into long-term, seasonal and residual components by the Seasonal Trend decomposition using Loess (STL) method. The linear trends of the long-term components are analyzed in time and space to reveal the spatiotemporal features of the monthly TWSA. To address the dominant spatial mode of the TWSA, the empirical orthogonal function (EOF) method is employed for the monthly TWSA. The major results show that the arid regions of Central Asia have experienced a significant terrestrial water depletion with the rate of -0.44 mm/month based on the long-term component of the monthly TWSA in 2003–2014. Among the four seasons, spring has the largest TWS caused by the increased snowmelt water with the more precipitation and warm climate. The smallest TWS is detected in autumn. For the spatial features of TWSA, the water depletion centers appear in the small part areas of southwestern Kazakhstan (KAZ), part areas of northwestern Uzbekistan (UZB) and Turkmenistan (TKM). While the increasing linear trends mainly appear in southern Tarrim basin and Kunlun Mountain, and part areas of northeastern KAZ. These spatial variations are consistent with the EOF result. This preliminary investigation in the TWS variations is valuable for scientists and decision-makers in formulating scientifically based approaches and policies for water resource management over the arid regions of Central Asia.

Ключ. слова

terrestrial water storage anomaly, assessment and simulation, Silk Road, GRACE satellite dataset

Список литературы

  1. Barnett T., Adam J., Lettenmaier D. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005. V. 438. P. 303–309.
  2. Chen X. Retrieval and Analysis of Evapotranspiration in Central Areas of Asia. Beijing: China Meteorological Press, 2012. P. 111–112 (in Chinese).
  3. Chen X., Wang S., Hu Z. Spatiotemporal characteristics of seasonal precipitation and their Relationships with ENSO in Central Asia during 1901–2013. Journal of Geographical Sciences, 2018. V. 28. P. 1341–1368.
  4. Deng M. “ThreeWater Lines” strategy: Its spatial patterns and effects on water resources allocation in northwest China. Acta Geographica Sinica, 2018. V. 7. P. 1189–1203.
  5. Hu Z., Zhou Q., Chen X. Temperature changes in Central Asia from 1979–2011 based on multiple datasets. Journal of Climate, 2014. V. 27. P. 1143–1167.
  6. Long D., Chen X., Scanlon B. et al. Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Scientific Reports. Nature Publishing Group, 2016. V. 6. P. 24398. 
  7. Long D., Pan Y., Zhou J. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sensing of Environment, 2017. V. 192. P. 198–216.
  8. Oki T., Kanae S. Global hydrological cycles and world water resources. Science, 2006. V. 313. P. 1068–1072.
  9. Piao S., Ciais P., Huang Y., Shen Z., Peng Sh., Li J., Zhou L., Liu H., Ma Yu., Ding Yi., Friedlingstein P., Liu Ch., Tan K., Yu Y., Zhang T., Fang J. The impacts of climate change on water resources and agriculture in China. Nature, 2010. V. 467. P. 44–51.
  10. Scanlon B., Zhang Z. Save, H., Sun A.Y., Müller Schmied H., van Beek L.P.H., Wiese D.N., Wada Y., Long D., Reedy R.C., Longuevergne L., Döll P., Bierkens M.F.P. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of America, 2018. V. 115. P. E1080–E1089.
  11. Tapley, B.D., Bettadpur, S., Ries, J., Thompson P.F., Watkins M.M. GRACE measurements of mass variability in the Earth system. Science, 2004. V. 305. P. 503–505.
  12. Taylor R., Scanlon B., Doll P., Rodell M., van Beek R., Wada Y., Longuevergne L., Leblanc M., Famiglietti J.S., Edmunds M., Konikow L., Green T.R., Chen J., Taniguchi M., Bierkens M.F.P., MacDonald A., Fan Y., Maxwell R.M., Yechieli Y., Gurdak J.J., Allen D.M., Shamsudduha M., Hiscock K., Yeh P. J.-F., Holman I., Treidel H. Ground water and climate change. Nature Climate Change, 2013. V. 3. P. 322–329.
  13. Yeh P., Swenson S., Famiglietti J., Rodell M. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resources Research, 2006. V. 42. P. W12203.

Для цитирования: Zhou Q. Changes and variations of the terrestrial water storage anomaly over the core area of the Silk Road. ИнтерКарто. ИнтерГИС. Геоинформационное обеспечение устойчивого развития территорий: Материалы Междунар. конф. M: Издательство Московского университета, 2019. Т. 25. Ч. 2. С. 28–33 DOI: 10.35595/2414-9179-2019-2-25-28-33

For citation: Zhou Q. Changes and variations of the terrestrial water storage anomaly over the core area of the Silk Road. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2019. V. 25. Part 2. P. 28–33. DOI: 10.35595/2414-9179-2019-2-25-28-33