Geomorphometric analysis of agricultural areas based on the FABDEM digital elevation model

DOI: 10.35595/2414-9179-2024-2-30-252-262

Посмотреть или загрузить статью (Eng)

Об авторах

Marina G. Erunova

Federal Research Center “Krasnoyarsk Science Center”,
50, Akademgorodok, Krasnoyarsk, 660036, Russia,
E-mail: marina@icm.krasn.ru

Oleg E. Yakubailik

Institute of Computational Modeling Siberian Branch of the Russian Academy of Sciences,
50/44, Akademgorodok, Krasnoyarsk, 660036, Russia,
E-mail: oleg@icm.krasn.ru

Аннотация

The application of geoinformation technologies and digital elevation models (DEMs) makes it possible to significantly automate the process of analyzing the terrain in the area under study. Modern DEMs are based on remote sensing data, and their accuracy is constantly improving. Based on new non-profit FABDEM DEM data and the SAGA GIS functionality, a geomorphometric analysis of the topography in the agricultural area of the experimental production farm (EPF) “Mikhailovskoye” was carried out at the Krasnoyarsk Science Center of the Russian Academy of Sciences. For the farm area, a series of large-scale thematic maps was constructed, including slope steepness and aspect, plan and profile curvatures, Terrain Ruggedness Index (TRI), Slope Length and Steepness Factor (LS-factor), Topographic Wetness Index (TWI), etc. A model of surface runoff was also built. The morphometric analysis of the area of EPF “Mikhailovskoye” shows that, despite its small size, the surface structure is heterogeneous. The analysis shows that 85 % of the farm area is flat land, while the remaining 15 % is located on more elevated local landforms. The steepness of most slopes is up to 3°, accounting for 92 % of the total area, with only 8 % of the land being steeper than 3°. The fields of the farm are dominated by western and eastern slopes, which account for 42 % of the total area, while 36 % of the area is represented by southern slopes, with 2 % represented by northern ones. The results of the analysis of the Topographic Wetness Index (TWI) for the entire farm indicate a low erosion risk: only 0.5 % of the farm land has drainage depressions, with 3 % located on hills. According to the Slope Length and Steepness Factor (LS-factor), the hilly areas are located on the slopes with the steepness higher than 4°.

Ключ. слова

digital terrain modeling, FABDEM, GIS, SAGA GIS, morphometric attributes

Список литературы

  1. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev, 2015. V. 8. Iss. 7. P. 1991–2007. DOI: 10.5194/gmd-8-1991-2015.
  2. Entin A.L., Koshel S.M., Lurie I.K., Samsonov T.E. Morphometric analysis of digital terrain models for assessing and mapping the distribution of surface runoff. Geography issues, 2017. No. 144. P. 169–186 (in Russian).
  3. Erunova M.G., Shpedt A.A., Yakubailik O.E., Trubnikov Yu.N. Geospatial Database for Digitization of the Agriculture System in the Krasnoyarsk Krai. Achievements of Science and Technology of AIC, 2019. V. 33. No. 7. P. 56–61 (in Russian). DOI: 10.24411/0235-2451-2019-10714.
  4. Florinsky I.V. Geomorphometry today. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 394–448 (in Russian). DOI: 10.35595/2414-9179-2021-2-27-394-448.
  5. Ganieva I.A. Prerequisites for the creation of an information and resource digital platform for the intellectual management of agriculture and land use systems for the Russian agricultural sector. Achievements of Science and Technology of AIC, 2019. V. 33. No. 12. P. 110–116 (in Russian). DOI: 10.24411/0235-2451-2019-11224.
  6. Gopp N.V. Using soil-geomorphological fatabase to study the spatial variability of humus, physical clay, and clay content in soils of Kuznetsk-Salair geomorphological province. Eurasian Soil Science, 2021. V. 54. No. 7. P. 986–998 (in Russian). DOI: 10.31857/S0032180X21070054.
  7. Hawker L., Uhe P., Paulo L., Sosa J., Savage J., Sampson C., Neal J. A 30 m global map of elevation with forests and buildings removed. Environmental Research Letters, 2022. V. 17. DOI: 10.1088/1748-9326/ac4d4f.
  8. Kopecký M., Macek M., Wild J. Topographic wetness index calculation guidelines based on measured soil moisture and plant species composition. Science of The Total Environment, 2021. V. 757. DOI: 10.1016/j.scitotenv.2020.143785.
  9. Kuznetsova A.S., Pushkarev A.A., Krasnoshchekov K.V. Yakubailik O.E., Erunova M.G. Application of FABDEM and other modern digital elevation models in the agricultural monitoring system. Information and mathematical technologies in science and management, 2023. No. 4 (32). P. 139–147 (in Russian). DOI: 10.25729/ESI.2023.32.4.012.
  10. Li Z., Zhu Q., C. Gold. Digital terrain modeling: Principles and methodology. CRC Press, 2005. 323 p. DOI: 10.1201/9780203357132.
  11. Maltsev K.A., Golosov V.N., Gafurov A.M. Digital elevation models and their use for assessing soil erosion rates on arable lands. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki (Proceedings of Kazan University. Natural Sciences Series), 2018. V. 160. No. 3. P. 514–530 (in Russian).
  12. Meles M.B., Younger S.E., Jackson C.R., Du E., Drover D. Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape position. Journal of Environmental Management, 2020. V. 255. DOI: 10.1016/j.jenvman.2019.109863.
  13. Mitasova H., Hofierka J., Zlocha M., Iverson L. Modeling topographic potential for erosion and depositing using GIS. International journal of geographical information systems, 1996. V. 10. No. 5. P. 629–641. DOI: 10.1080/02693799608902101.
  14. Permyakov R.V. Application of geoinformation technologies for solving geographic and cartographic problems (based on remote sensing materials). Geoinformatika, 2014. No. 3. P. 10–17 (in Russian).
  15. Reuter H.I., Kersebaum K.C. Chapter 27 Applications in precision agriculture. Developments in soil science, 2009. V. 33. P. 623–636. DOI: 10.1016/S0166-2481(08)00027-5.
  16. Shinkarenko S.S., Bodrova V.N., Sidorova N.V. The influence of slope exposure on the seasonal dynamics of the NDVI vegetation index of crop areas. Izvestia of the Lower Volga Agro-University Complex, 2019. No. 1 (53) (in Russian).
  17. Sharaya L.S., Shary P.A., Rukhovich O.V. Forecast evaluation of winter wheat productivity using topography. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2018. V. 20, No. 2 (2). P. 377–383 (in Russian).
  18. Shary P.A. Geomorphometry in earth sciences and ecology, an overview of methods and applications. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2006. No. 8 (2). P. 458–473 (in Russian).
  19. Shokin Y.I., Potapov V.P. GIS today: Current state, perspectives, solutions. Computational Technologies, 2015. V. 20. No. 5. P. 175–213 (in Russian).
  20. Shpedt A.A., Erunova M.G., Zlotnikova V.V. Methodology for assessing the natural resource potential of agricultural landscapes using GIS technologies. Zemledelie (Agriculture), 2023. No. 8. P. 9–13 (in Russian). DOI: 10.24412/0044‐3913‐2023‐8‐9-13.
  21. Stolbov I.A., Bryzhko V.G., Bryzhko I.V. Geoinformation support for erosion hazard assessment of rural territories. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference, 2022. V. 28. Part 2. P. 885–900 (in Russian). DOI: 10.35595/2414-9179-2022-2-28-885-900.
  22. Uuemaa E., Ahi S., Montibeller B., Muru M., Kmoch A. Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 2020. V. 12. Iss. 21. DOI: 10.3390/rs12213482.
  23. Weiss A. Topographic position and landforms analysis. Poster Presentation, ESRI Users Conference, San Diego, CA, 2001. Web resource: http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf (accessed 30.05.2024)
  24. Wilson J.P. Digital terrain modeling. Geomorphology, 2012. V. 137. Iss. 1. P. 107–121. DOI: 10.1016/j.geomorph.2011.03.012.

Для цитирования: Erunova M.G., Yakubailik O.E. Geomorphometric analysis of agricultural areas based on the FABDEM digital elevation model. ИнтерКарто. ИнтерГИС. Геоинформационное обеспечение устойчивого развития территорий: Материалы Междунар. конф. M: Географический факультет МГУ, 2024. Т. 30. Ч. 2. С. 252–262 DOI: 10.35595/2414-9179-2024-2-30-252-262

For citation: Erunova M.G., Yakubailik O.E. Geomorphometric analysis of agricultural areas based on the FABDEM digital elevation model. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 252–262. DOI: 10.35595/2414-9179-2024-2-30-252-262