Model for calculating the speed of delivery of remotely sensed Earth observation information

DOI: 10.35595/2414-9179-2024-1-30-534-544

Посмотреть или загрузить статью (Eng)

Об авторах

Igor N. Kartsan

Marine Hydrophysical Institute, Russian Academy of Sciences,
2, Kapitanskaya str., Sevastopol, 299011, Russia,

Reshetnev Siberian State University of Science and Technology,
31, Gazety Krasnoyarsky Rabochy ave., Krasnoyarsk, 660037, Russia,

E-mail: kartsn2003@mail.ru

Aleksandr O. Zhukov

Expert and Analytical Center,
33, Talalikhina str., Moscow, 109316, Russia,

Institute of Astronomy of the Russian Academy of Sciences,
48, Pyatnitskaya str., Moscow, 119017, Russia,

E-mail: aozhukov@mail.ru

Vladimir O. Skripachev

Expert and Analytical Center,
33, Talalikhina str., Moscow, 109316, Russia,
E-mail: skripatchevv@inbox.ru

Аннотация

In full accordance with the observed intensive growth of the global market for products and services based on space-based information provided by space-based Earth observation assets, satellite missions and space-based Earth remote sensing technologies are currently undergoing rapid development. Space images are important for monitoring emergency situations: floods and inundations, forest fires and earthquakes. A wide range of Earth remote sensing satellites equipped with many types of target equipment are used to obtain all that information. In the course of developing the design of a space-based operational data transmission system, which is based on a heterogeneous orbital constellation using a network of relay satellites, it is necessary to model the ballistic structure of the Earth remote sensing orbital constellation. The efficiency of Earth remote sensing information delivery to consumers should be considered under various options of building a network of relay satellites, taking into account the characteristics of existing and prospective high-speed radio lines of satellites. During modeling it is also necessary to take into account that in the case of a single repeater satellite the best picture on the minimum times of information delivery efficiency from the Earth remote sensing satellite is observed for a low-orbit repeater satellite, and the best picture on the maximum times of information delivery efficiency from the Earth remote sensing satellite is observed for a geostationary repeater satellite. An algorithm for model formation of an orbital constellation of different types of satellites with given initial ballistic characteristics is created. The presented algorithm consists in sequential calculation of initial conditions of reference satellites for each plane, and then, according to the initial conditions of the reference satellite, calculation of initial conditions of other satellites of the given plane.

Ключ. слова

Earth remote sensing, satellites, transponder satellite, orbit, efficiency of information delivery

Список литературы

  1. Agapov V. TDRS-H opens up new possibilities for satellite data transmission. Space News, 2000. V. 10. No. 8 (211). P. 31–34 (in Russian).
  2. Aleksakhina A.A., Kucherov B.A., Khromenkov A.S. Use of existing and future information technologies in planning the utilization of spacecraft control facilities. Space and rocket science, 2016. No. 6 (91). P. 140–148 (in Russian).
  3. Artyushenko V.M., Kucherov B.A. Increasing the efficiency of conflict-free control of satellite constellation under resource constraints. Electrical engineering and information complexes and systems, 2013. V. 9. No. 3. P. 59–66 (in Russian).
  4. Barkova M.E., Zhukov A.O. Analysis of existing and prospective concepts of inter-satellite laser communication. Technologies of obtaining and processing information about dynamic objects and systems. II All-Russian Scientific and Practical Conference, 2021. P. 25–33 (in Russian).
  5. Chymyrov A., Bekturov A. Evaluation of the modern Earth Gravitational Models over territory of the Kyrgyz Republic. International Journal of Geoinformatics, 2019. V. 15. No. 4. P. 77–83.
  6. Congalton R.G., Green K. Assessing the accuracy of remotely sensed data Principles and practices, 2nd edition. Boca Raton: CRC Press, Taylor & Francis Group, 2009. 183 p.
  7. Erunova M., Yakubailik O. GIS technologies for agricultural monitoring in the regional agriculture system of the Krasnoyarsk territory. Multidisciplinary Scientific GeoConference: SGEM, Ed. 2.2. Sofia, 2019. V. 19. P. 863–870. DOI: 10.5593/sgem2019/2.2/S11.106.
  8. Erunova M., Yakubailik O. Monitoring of agricultural vegetation development based on time series analysis of satellite data. Proc. SPIE 11560, 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, 1156054 (12 November 2020). DOI: 10.1117/12.2575663.
  9. Ivanova Y.N., Ivanov K.S., Bondareva M.K., Ermolaev V.A., Zhukov A.O. Experience and possibilities of application of space remote sensing systems for forecasting gold mineralization in hard-to-reach areas on the example of the Polar Urals. Bulletin of Peoples. Friendship University of Russia. Series: Engineering Research, 2019. V. 20. No. 2. P. 123–133 (in Russian). DOI: 10.22363/2312-8143-2019-20-2-123-133.
  10. Jain A.O., Thaker T., Chaurasia A., Patel P., Singh A.K. Vertical accuracy evaluation of SRTM-GL1, GDEM-V2, AW3D30 and CartoDEM-V3.1 of 30-m resolution with dual frequency GNSS for lower Tapi Basin India. Geocarto International, 2018. V. 33. Iss. 11. P. 1237–1256. DOI: 10.1080/10106049.2017.1343392.
  11. Kartsan I.N., Efremova S.V., Khrapunova V.V., Tolstopiatov M.I. Choice of optimal multiversion software for a small satellite ground-based control and command complex. IOP Conference Series: Materials Science and Engineering, 2018. V. 450. Iss. 2. 022015. DOI: 10.1088/1757-899X/450/2/022015.
  12. Kartsan I.N., Goncharov A.E., Zelenkov P.V., Kovalev I.V., Fateev Y.L., Tyapkin V.N., Dmitriev D.D. Applying filtering for determining the angular orientation of spinning objects during interference. IOP Conference Series: Materials Science and Engineering, 2016. 012020. DOI: 10.1088/1757-899X/155/1/012020.
  13. Kobets D.A., Matveev A.M., Mazurov A.A., Proshin A.A. Organization of automated multithreaded processing of satellite information in remote monitoring systems. Current Problems in Remote Sensing of the Earth from Space, 2015. V. 12. No. 1. P. 145–155 (in Russian).
  14. Kolecka N., Kozak J. Assessment of the accuracy of SRTM C- and X-Band high mountain elevation data: A case study of the Polish Tatra Mountains. Pure and Applied Geophysics, 2014. No. 171 (6). P. 897–912. DOI: 10.1007/s00024-013-0695-5.
  15. Kucherov B.A. Problem statement for optimization of spacecraft control distribution under resource constraints. Information Technology Bulletin, 2018. No. 4 (18). P. 32–43 (in Russian).
  16. Loupian E.A., Proshin A.A., Bourtsev M.A., Kashnitskiy A.V., Balashov I.V., Bartalev S.A., Konstantinova A.M., Kobets D.A., Mazurov A.A., Marchenkov V.V., Matveev A.M., Radchenko M.V., Sychugov I.G., Tolpin V.A., Uvarov I.A. Operational experience and development of a Center for Collective Use of systems for archiving, processing and analysis of satellite data (“IKI Monitoring” Center for Collective Use). Current Problems in Remote Sensing of the Earth from Space, 2019. V. 16. No. 3. P. 151–170 (in Russian). DOI: 10.21046/2070-7401-2019-16-3-151-170.
  17. Mukhamedjanov I.D., Konstantinova A.M., Loupian E.A., Gafurov A.A. Approaches to the construction of the satellite service system for Amu Darya river and its tributaries. Proceedings of the XVII All-Russian Open Conference “Actual Problems of Remote Sensing of the Earth from Space”, 11–15 November 2019. Moscow: Space Research Institute of RAS, 2019. P. 111 (in Russian). DOI: 10.21046/17DZZconf-2019a.
  18. Ozdogan M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sensing of Environment, 2010. No. 114 (6). P. 1190–1204. DOI: 10.1016/j.rse.2010.01.006.
  19. Patel A., Katiyar K.S., Prasad V. Performances evaluation of different open source DEM using differential global positioning system (DGPS). The Egyptian Journal of Remote Sensing and Space Sciences, 2016. No. 19 (1). P. 7–16.
  20. Proshin A.A., Loupian E.A., Kashnitskiy A.V., Balashov I.V., Bourtsev M.A. Current Capabilities of the “IKI-Monitoring” Center for Collective Use. Aachen: CEUR Workshop Proceedings, 2019. V. 2534. P. 39–44.
  21. Redowan M., Akter S., Islam N. Analysis of forest cover change at Khadimnagar National Park, Sylhet, Bangladesh, using Landsat TM and GIS data. Journal of Forestry Research, 2014. No. 25 (2). P. 393–400. DOI: 10.1007/s11676-014-0467-9.
  22. Sankey T.T., McVay J., Swetnam T.L., McClaran M.P., Heilman P., Nichols M. UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring. Remote Sensing in Ecology and Conservation, 2018. V. 4. No. 1. P. 20–33. DOI: 10.1002/rse2.44.
  23. Tyapkin V.N., Kartsan I.N., Dmitriev D.D., Efremova S.V. Algorithms for adaptive processing of signals in a flat phased antenna array. Proceedings of International Siberian Conference on Control and Communications (SIBCON), 2017. 7998452. DOI: 10.1109/SIBCON.2017.7998452.
  24. Vermeulen L.M., Munch Z., Palmer A. Fractional vegetation cover estimation in southern African rangelands using spectral mixture analysis and Google Earth Engine. Computers and Electronics in Agriculture, 2021. V. 182. 105980. DOI: 10.1016/j.compag.2020.105980.
  25. Wang B., Jia K., Liang S., Xie X., Wei X., Zhao X., Yao Y., Zhang X. Assessment of Sentinel-2 MSI spectral band reflectances for estimating fractional vegetation cover. Remote Sensing, 2018. V. 10. No. 12. P. 1927. DOI: 10.3390/rs10121927.

Для цитирования: Kartsan I.N., Zhukov A.O., Skripachev V.O. Model for calculating the speed of delivery of remotely sensed Earth observation information. ИнтерКарто. ИнтерГИС. M.: Географический факультет МГУ, 2024. Т. 30. Ч. 1. С. 534–544. DOI: 10.35595/2414-9179-2024-1-30-534-544

For citation: Kartsan I.N., Zhukov A.O., Skripachev V.O. Model for calculating the speed of delivery of remotely sensed Earth observation information. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 1. P. 534–544. DOI: 10.35595/2414-9179-2024-1-30-534-544