sii: materialy VII Vserossiyskoy nauchno-prakticheskoy konferencii (Voronezh, 10-12 dekabrya 2015 g.) / Voronezhskiy gosudarstvenniy universitet. [Analysis of the seasonal changes of the Moscow surface urban heat island based on thermal infrared satellite images // Geoinfirmation cartography in regions of Russia: Proceedings of VII Russian-wide research and practice conference (Voronezh, 10–12th of December 2015) / Voronezh state university] – Voronezh: Hauchnaya kniga, 2015. Pp. 29–36.

2. Lyalko V.I., Filippovich V.Y., Stankevich S.A., Mychak A.G., Titarenko O.V. et al. Vliyaniye urbanizatsii na mikroklimat gorodov (po materialam teplovykh aerokosmocheskikh syomok). Informatsionniy otchyot o NIR [The effect of urbanization on the city microclimate (using the materials of thermal infrared aerospace surveys). Research project information report]. Kiev: TSAKIZ IGN NAN Ukrainy, 2014.

3. Atmospheric Correction Module: QUAC and FLAASH User's Guide // ENVI, Atmospheric Correction Module, Version 4.7, 2009.

4. Atmospheric Correction Parameter Calculator // NASA. [Электронный ресурс]. URL: http://atmcorr.gsfc.nasa.gov/ (дата обращения 20.02.2016).

5. Converting Landsat TM and ETM+ thermal bands to temperature // The Yale Center for Earth Observation, 2010. [Электронный ресурс]. URL: http://www.yale.edu/ceo (дата обращения 14.04.2012).

6. Science data users handbook: Landsat 7: Data products: Level 1G Product // NASA, 2011. [Официальный сайт HACA]. URL: http://www.yale.edu/ceo (дата обращения 08.04.2016).

7. Srinivasan S. Using data from the Landsat 8 TIRS instrument to estimate surface temperature // Geohackers, 2013. [Электронный ресурс]. URL: http://geohackers.in/2013/08/using-datafrom-the-landsat-8-tirs-instrument-to-estimate-surface-temperature (дата обращения 10.03.2015).

8. U.S. Department of the Interior U.S. Geological Survey: Landsat Missions: Using the USGS Landsat 8 Product // [Официальный сайт Геологической службы США]. URL: http://landsat.usgs.gov/Landsat8_Using_Product.php (дата обращения: 25.04.2016).

9. Yang H., Zhang L.F., Zhang X., Fang C., Tong Q. Algorithm of emissivity spectrum and temperature separation based on TASI data // Journal of Remote Sensing. 2011. Vol. 15. No 6. Pp. 1242–1254.

УДК 911.2:528.7:551.32

А.Д. Китов¹, В.М. Плюснин²

ИНВЕНТАРИЗАЦИЯ НИВАЛЬНО-ГЛЯЦИАЛЬНЫХ ОБРАЗОВАНИЙ ХРЕБТА КОДАР (БАЗА ДАННЫХ)

Резюме. Работа представляет продолжение исследований авторов по картографированию нивально-гляциальных образований Южной Сибири и созданию соответствующих баз данных [Китов, Плюснин, 2008, 2011, 2012, 2015]. Рассматривается состояние оледенения с середины прошлого века до настоящего времени на разных известных этапах. Для хребта Кодар выделяются состояния оледенения: (1) по первым топографическим картам на начало 1960-х лет; (2) по данным Каталога ледников СССР (начало 1970-х); (3) по Карте ледников хребта Кодар 1976 г. (исследования ИГСиДВ АН СССР); (4) современное состояние по данным дистанционного зондирования Земли (комоснимки 2007–2015 гг. EROS, Quick Bird, Aster, Landsat). Атрибутивные таблицы представлены в формате типа WGI [WEBGEO, 2015]. Анализ данных разного временного состояния показывает динамику оле-

¹ Институт географии им. В.Б. Сочавы СО РАН; e-mail: kitov@irigs.irk.ru.

² Институт географии им. В.Б. Сочавы СО РАН; e-mail: plyusnin@irigs.irk.ru.

денения хребта Кодар с тенденцией сокращения ледников более чем в два раза. Уточнены координаты центров ледников, их площадь, форма, длина, ориентация и высотное расположение сохранившихся и деградировавших нивально-гляциальных образований. Полученные данные и картографические изображения гляциальных объектов уточняют и дополняют международные базы данных о ледниках.

Ключевые слова: ледники, хребет Кодар, базы данных, ГИС, дистанционное исследование Земли.

Введение. Изучение оледенения хребта Кодар (рис. 1) претерпело несколько этапов от первого косвенного упоминания о ледниках в 1883 г. до сомнений в существовании настоящих ледников и, наконец, их описание, и детальное картографирование [Пластинин, 1998]. В 1930 – 1950-е годы отрицалось наличие ледников [Суслов, 1954]. Но в 1958-59 гг. В.С. Преображенский [1960] впервые описал ледники хребта Кодар, положив начало их картографированию.

Первоначально исследования проводились натурными наблюдениями с использованием аэроснимков и топографических карт. Масштабные аэросъемки в СССР выполнялись в начале 1960-х для составления топографических карт масштабов 1:25000 – 1:200000. Съемки 1963 года легли в основу составления каталога ледников на эту территорию. Поэтому первым этапом можно считать фиксацию нивально-гляциальных образований на топографических картах. Эти материалы представляют самостоятельный интерес и отображают значительно большее количество ледников, чем описаны В.С. Преображенским и в последующем включенных в Каталог ледников СССР с иной нумерацией (рис. 2).

Создание каталога ледников СССР [Каталог, 1972] следует считать вторым этапом детальной инвентаризации оледенения хребта Кодар. В каталоге в качестве названий были сохранены наименования ледников, данные В.С. Преображенским, но новая нумерация не соответствует первоначальной. В каталоге представлено 30 ледников (рис. 3). В основном это работы Института географии АН СССР и МГУ.

Рис. 1. Основные территории оледенения: Кодар, Байкальский и Баргузинский хребты, Восточный Саян. Ключевой участок – хребет Кодар

Рис. 2. Нивально-гляциальные образования хребта Кодар: 1–4 – центры ледников: 1 – по топокартам 1960-х; 2 – по данным Каталога ледников 1972 г.; 3 – по Карте ледников 1976 г.;
4 – по данным космосъемки (современное состояние); 5 – предполагаемые границы ледников по топокартам на начало 1960-х лет. Фон – топокарта М 1:500000 О-50-В, -Г

Рис. 3. Оледенение хребта Кодар: *а* – центры ледников с современной нумерацией по Каталогу ледников 1972 г. (координаты отмечены с не достаточной точностью и стилизованно, поэтому центр может не попадать на ледник); *б* – схема расположения ледников [Каталог, 1972]. Фон – топокарты ГГЦ М 1:50000

Третий этап пришелся на середину – конец 1970-х [Пластинин, 1998; Плюснин, 1979]. В основном это работы Института географии СО РАН (ранее ИГСиДВ АН СССР), отдельные сведения содержатся еще в нескольких публикациях [Голубев, 1976; Мерзлотоведение, 1981; Долгушин, Осипова, 1989]. Дополнительно к 30 известным было описано 7 ледников севернее основной группировки оледенения хребта, которые отображены на Карте ледников хребта Кодар м-ба 1:100000, составленной Л.А. Пластининым, В.М. Плюсниным и П.П. Рудаковым (не опубл., рис. 4).

Рис. 4. Карта ледников хребта Кодар 1976 г.

Четвертый этап – современный, начиная с 2007 года [Поповнин, 2006; Коваленко, 2008; Осипов и др., 2008; Китов, Плюснин, 2008; Плюснин, Китов, 2010; Иванов, 2015; Stokes et., 2013; Stepanova et., 2015]. Наиболее детально исследовался ледник Азаровой [Shahgedanova

et., 2011; Коваленко, 2008]. Подробный обзор всей территории Кодара выполнен ЛИН СО РАН [Osipov, Osipova, 2014, 2015]. Отдельно стоит отметить особенность современного этапа – использование геоинформационных систем (ГИС) для инвентаризации и мониторинга ледников на основе цифровой многоспектральной космической съемки, построение цифровых моделей местности (в том числе с использованием дронов, воздушного и наземного лазерного сканирования) и 3D-моделирования, а так же перевод баз данных (БД) в электронный вид. Первоначально перевод данных Каталога ледников СССР и создание соответствующего сайта Интернет было выполнено Институтом географии РАН [Котляков и др., 2015].

Материалы и методы исследований. Если на первых этапах инвентаризации ледников основным материалом были топографические карты и аэрокосмоснимки, а «Методика и применяемые приборы при измерительных работах были обычными (циркуль с постоянным раствором в 1 мм, палетка с размером сетки 1 мм²). Все измерения длин и площадей проводились дважды. Среднее из двух измерений округлялось с точностью до 0,1 км и 0,1 км²» [Каталог, 1972; Руководство, 1966]. То в настоящее время при инвентаризации ледников используются многоспектральные космоснимки с пространственным разрешением от 0,4 до 30 м, а основной измерительный и картографический инструмент – компьютер с соответствующим программным обеспечением для составления ГИС-проекта.

Для инвентаризации состояния оледенения за последние полвека и составления базы данных использовались космоснимки высокого разрешения EROS (разрешение 0,7 м), Quick Bird (0,6 м), Aster (2,5 м), среднего Landsat-7, -8 (15, 30 м) и топографические карты м-бов 1:200000 (растровая и векторная), 1:100000 (растровая), 1:50000 (растровая) с сайта Госгисцентра (ГГЦ).

Методика заключалась в следующем. Создавались объекты четырех временных срезов: (1) по топографическим картам, предположительно самый ранний период (1960-е годы); (2) по данным каталога СССР (их цифровое представление в международных БД, начало 1970-х); (3) по «Карте ледников хребта Кодар» (конец 1970-х); (4) по космоснимкам (современное состояние). Кроме этого использовалась цифровая модель рельефа SRTM-3» (разрешение 30 м, экстраполировано до 10 м). Все эти данные приведены к единой пространственной основе в проекции Гаусса-Крюгера (Пулково-1942 г., зона О-50, с центральным меридианом 117), векторные данные в десятичных градусах.

Каждый временной тематический срез представлен тремя типами векторных данных (ГИС-тем): точечные (центр нивально-гляциального образования, определяет координаты ледника); линейные (осевая линия объекта, определяет его длину); площадные (полигон, определяющий границу объекта, его площадь и периметр). Из полигональной темы рассчитывалась ее центральная точка.

Центральная линия, по возможности, проводилась от верхней до нижней границы ледника как можно ближе к осевой линии и центральной точке ледника. Соответственно эта ломаная линия имеет минимально 3 отметки – верх, центр, низ. Если ледник изгибается, то иногда добавлялось 1–2 промежуточные точки. У ледника сложной формы, центральная точка может не попадать на осевую линию и на тело ледника, например, как у ледника Советских географов, образующегося из двух каров. По результатам векторизации и анализа графических материалов формировалась атрибутивная таблица (БД), соответствующая формату WGI.

Для выделения первичного объекта (первого временного среза) формировалась суперпозиция всех разновременных и разномасштабных растровых и векторных топографических карт, и выделялась наибольшая возможная территория ледника, представленная этой интегральной топокартой. Иногда производилась незначительная реконструкция по космоснимку.

Второй временной срез представлен данными каталога ледников СССР и соответствующей схемой (см. рис. 36). Это наиболее проблематичный тематический слой, так как данные в таблице даны с низкой точностью, нет картографического изображения ледников (представлена мелкомасштабная схема). Можно было бы изобразить ледники овалами площадью и длиной, определяемыми данными таблицы, но решено было генерализованно представить объекты по форме кара полигоном соответствующей длины и площади. Если учитывать максимальную и минимальную высотные границы ледника, то часто размер кара был не

достаточен для его размещения. Поэтому площадь приходилось подгонять под требуемую величину за счет бортов кара в пределах допустимых верхних и нижних изолиний рельефа. Ледник №29 не удалось векторизовать с необходимой площадью (требовалось 1,1 км², одна-ко размер кара позволял разместить ледник величиной 0,24 км² с учетом его граничных условий по высоте). Длины ледников, как правило, были короче требуемой. Преимущественно, согласно высотным условиям (верхняя – нижняя границы), ледники приходилось размещать в нижней части кара, ниже характерного места, где располагались ледники на топокарте и других тематических материалах (космоснимках).

Третий временной срез соответствует карте ледников хребта Кодар 1976 г. (см. рис. 4). На ней ледники представлены генерализованно, а саму карту не удалось точно совместить с топокартой, поэтому векторизованные объекты пришлось смещать по месту с учетом геоморфологии кара и предыдущего состояния объекта, полученного по топографическим картам. Некоторые ледники имели отметки высшей и низшей границ, это использовалось для коррекции положения ледника по рельефу топокарты. Для уточнения использовалась карта из работы Л.А. Пластинина [1998].

Четвертый (современный) тематический срез составлен согласно дешифрированию космоснимков (2007–2015 гг.): Landsat-TM, Landsat-ETM+, Landsat-8, EROS, Quick Bird, Aster (рис. 5).

Рис. 5. Основной узел оледенения хребта Кодар на фоне космоснимка Landsat-8 авг.2014 г. Границы ледников (1-4): 1 – современное состояние по космосъемке (с указанием номера ледника в центре); 2 – по Карте 1976 г.; 3 – по данным Каталога ледников СССР 1972 г.; 4 – по топокартам 1960-х лет; 5 – центры ледников по координатам Каталога ледников СССР

Результаты исследований и их обсуждение. В результате ГИС-анализа параметров векторизованных нивально-гляциальных объектов, полученных по данным четырех временных периодов (см. рис. 2-5) были составлены БД и рассчитаны основные характеристики этих объектов: площадь, периметр, координаты центров (долгота, широта в десятичных гра-

дусах), длина, верхняя и нижняя границы и др. Основные характеристики ледников по БД Каталога ледников СССР 1972 г. представлены в табл. 1.

Таблица 1

II) Num	n Code	Glacier_name	Lat	Long	Photo_type	Photo_year	Total_area	Max_length	Max_elev	Mean_elev	Min_elev	Classifica
0	1	SU5D17201001	20	56.90	117.35	F	1963	0,6	1	2280	2130	1980	640110
1	2	SU5D17201002	28	56.88	117.35	F	1963	0,4	0,8	2320	2180	2040	640210
2	3	SU5D17201003	11	56.85	117.40	F	1963	0,7	1,9	2120	1990	1860	530110
3	4	SU5D17201004	ZABAIKALIETZ	56.85	117.43	F	1963	0,4	1	2400	2270	2140	640110
4	5	SU5D17201005	SYGYKTINSKIY	56.85	117.42	N/A	-	0,6	1	2580	2490	2400	530110
5	6	SU5D17201006	DMITRIYA KOLOSOV	56.83	117.43	N/A	-	0,8	1,5	2460	2360	2250	750110
6	7	SU5D17201007	5	56.90	117.48	F	1963	0,4	0,9	2200	2090	1980	640110
7	8	SU5D17201008	19	56.90	117.50	N/A	-	0,5	0,8	2320	2160	2000	640210
8	9	SU5D17201009	18	56.90	117.52	N/A	-	0,7	1,3	2300	2150	2000	530110
9	10	SU5D17201010	17	56.88	117.52	N/A	-	0,7	1,2	2400	2230	2060	640110
1) 11	SU5D17201011	YEVGENIYA TIMASH	56.88	117.53	N/A	-	0,7	1,6	2380	2210	2040	640110
1	1 12	SU5D17201012	SOVETSKIH GEOGRAFOV	56.88	117.55	N/A	-	1,4	2	2500	2300	2090	530110
12	2 13	SU5D17201013	22	56.97	117.55	N/A	-	0,7	1,4	2200	2020	1840	640110
1.	3 14	SU5D17201014	25	56.98	117.63	N/A	-	0,4	1	2320	2210	2100	640110
14	4 15	SU5D17201015	27	57.00	117.67	N/A	-	0,6	1,2	2240	2120	2000	640110
1:	5 16	SU5D17201016	26	56.98	117.65	N/A	-	0,3	0,7	2380	2280	2180	750110
1	5 17	SU5D17201017	23	56.98	117.67	N/A	-	0,3	0,7	2380	2240	2100	530210
1	7 18	SU5D17201018	24	56.97	117.63	F	1963	0,2	0,6	2440	2340	2240	640110
1	3 19	SU5D17201019	21	56.95	117.55	F	1963	0,7	1,4	2460	2350	2240	530110
1	20	SU5D17201020	N. AZAROVOI	56.88	117.58	N/A	-	1,3	2,1	2320	2160	2000	640110
2) 21	SU5D17201021	OLIEGA JABLONSKOGO	56.85	117.57	F	1963	0,8	1,5	2600	2400	2200	630110
2	1 22	SU5D17201022	ALEXANDRA KAUFMANA	56.85	117.55	F	1963	0,6	1,3	2580	2390	2200	630110
2	2 23	SU5D17201023	4	56.85	117.52	F	1963	0,4	0,7	2540	2380	2220	750210
2	3 24	SU5D17201024	E.S. BOBINA	56.87	117.52	N/A	-	0,8	1,9	2700	2520	2340	630110
24	4 25	SU5D17201025	D.V. NIKITINA	56.83	117.47	F	1963	0,5	1,3	2380	2220	2060	640110
2	5 26	SU5D17201026	SYGYKTINSKIY	56.83	117.42	F	1963	0,8	1,7	2670	2440	2200	530110
2	5 27	SU5D17201027	13	56.83	117.40	N/A	-	0,5	1,2	2720	2500	2280	530210
2	7 28	SU5D17201028	12	56.83	117.38	N/A	-	0,6	1,4	2540	2220	1900	640210
2	3 29	SU5D17201029	6	56.93	117.28	N/A	-	1,1	0,4	2120	2080	2040	640110
2	30	SU5D17201030	30	56.93	117.28	N/A	-	0,3	0,8	2160	2090	2020	640110
		Total						18.8	1.21	2400 333	2250 667	2100	

Характеристики ледников хребта Кодар в формате WGI по Каталогу ледников СССР [WEBGEO, 2015]

Примечание: Photo type – A (есть аэросъемка) N/A – нет съемки; Photo year – год аэросъемки.

Общая площадь – 18,8 км²; Средняя длина ледников – 1,21 км; средние верхняя, средняя и нижняя отметки соответственно – 2400, 2251 и 2100 м н.у.м.

Аналогичные БД были составлены на другие временные периоды (1960, 1976 и 2015 гг.). Для однозначной связи таблиц был введен сквозной идентификационный номер (ID), а так же номер ледника, отраженный в коде ледника (Code), но имеющий дробную часть, соответствующую буквенному имени ледника, например, ледник 29а, соответствует номеру 29,1. При разделении ледника в результате таяния, потребовалась нумерация нового ледника, например 33,0 и 33,1, соответствующие названиям № 33 (основная часть от прежнего ледника) и № 33а (вновь образовавшийся ледник из исходного).

По топокартам было выделено 107 нивально-гляциальных образований, интерпретируемых как ледники, общей площадью 52,8 км². Из них 30, первоначально описанных ледников занимали площадь – 26,5. .По Каталогу ледников – 18,8. По реконструированным данным Каталога ледников – 17,9. По карте ледников 1976 г площадь уже 40 ледников составила 12,1, а исходных тридцати – 10,7. В настоящее время выделено 109 объектов, так как некоторые ледники, занимавшие несколько каров, разделились, сосредоточившись каждый в своем каре. Общая площадь всех нивально-гляциальных образований – 14,3, а площадь основных 30 ледников сократилась за полвека в два раза – 9,2 км² (табл. 2). Для оценки современного состояния был введен параметр «Тип ледника». Фактически это степень деградации: 1 – ледник; 2 – сохранившийся, но частично забронированный поверхностной мореной; 3 – существенно сократившийся; 4 – каменный глетчер; 5 – многолетний снежник (табл. 3).

Таблица 2

Динамика основных ледников хребта Кодар

Год	Площадь, км ²	Средний пе- риметр, км	Средняя верхняя граница, м н.у.м.	Средняя нижняя гра- ница, м н.у.м.	Средняя длина, км	
1960	26,5	4,6	2463	2106	1,5	
1972 по Каталогу	18,8	-	2400	2100	1,2	
1972 по ГИС	17,9	4	2400	2100	1,2	
1976	10,7	2,4	2392	2198	0,93	
2015	9,2	2,4	2420	2194	0,86	

Таблица 3

Некоторые характеристики современного состояния 42 нивально-гляциальных образований (2015 г.)

Glacier_name		Num	Туре	Area	Perimeter	Length	Max_elev	Min_elev	Long	Lat
20		1	2	0,130	1,569	0,572	2180	2040	117,355	56,911
28		2	2	0,099	1,249	0,353	2290	2160	117,355	56,894
11		3	1	0,390	3,306	1,461	2520	2110	117,404	56,855
ZABAIKALIETZ		4	1	0,142	1,598	0,488	2390	2260	117,426	56,854
SYGYKTINSKIY		5	1	0,340	2,567	0,997	2650	2420	117,424	56,849
DMITRIYA KOLOSOV		6	1	0,457	2,877	1,028	2490	2300	117,443	56,842
5		7	2	0,122	1,789	0,747	2490	2290	117,490	56,895
19		8	1	0,315	2,629	0,964	2340	2100	117,504	56,903
18	8	9	1	0,371	2,656	1,110	2360	2090	117,514	56,894
17	9	10	1	0,332	2,460	0,931	2400	2190	117,529	56,889
YEVGENIYA TIMASH	10	11	1	0,379	2,860	1,216	2400	2130	117,540	56,884
SOVETSKIH GEOGRAFOV	11	12	1	1,156	7,236	1,952	2520	2180	117,549	56,876
22	12	13	1	0,302	2,374	0,924	2180	1950	117,549	56,963
25	13	14	4	0,251	1,950	0,766	2300	2170	117,628	56,979
27	14	15	1	0,231	2,022	0,719	2300	2030	117,661	56,999
26	15	16	3	0,185	1,740	0,589	2300	2130	117,656	56,981
23	16	17	4	0,116	1,433	0,250	2300	2050	117,669	56,982
24	17	18	5	0,073	1,291	0,540	2390	2230	117,634	56,975
18a	109	18	4	0,096	1,205	0,438	2210	2110	117,621	56,972
21	18	19	3	0,161	2,185	0,509	2360	2250	117,557	56,955
N. AZAROVOI	19	20	1	0,526	3,959	1,624	2450	2130	117,577	56,887
OLIEGA JABLONSKOGO	20	21	1	0,345	3,072	1,250	2600	2340	117,568	56,858
ALEXANDRA KAUFMANA	21	22	1	0,279	2,994	1,262	2600	2360	117,556	56,858
4	22	23	1	0,160	1,628	0,603	2580	2320	117,522	56,852
E.S. BOBINA	23	24	1	0,812	4,551	1,785	2800	2440	117,519	56,878
D.V. NIKITINA	24	25	1	0,135	1,571	0,597	2450	2290	117,464	56,826
SYGYKTINSKIY	25	26	1	0,613	4,590	1,395	2750	2360	117,412	56,844
13	26	27	1	0,196	2,238	0,800	2600	2300	117,397	56,836
12	27	28	2	0,111	1,515	0,517	2200	2010	117,389	56,841
6	28	29	1	0,104	1,453	0,405	2260	2060	117,283	56,937
29a	29	29	1	0,094	1,250	0,377	2540	2390	117,284	56,932
30	30	30	1	0,141	1,928	0,420	2240	2030	117,281	56,943
31	31	31	1	0,203	2,012	0,619	2100	1840	117,221	56,979
32	32	32	2	0,076	1,437	0,579	1990	1875	117,392	57,044
33	33	33	1	0,185	2,081	0,769	2210	2060	117,416	57,048
33a	106	33	2	0,051	1,134	0,156	2090	2030	117,424	57,053
34	34	34	1	0,364	2,828	1,006	2280	2070	117,439	57,048
35	35	35	1	0,111	1,480	0,530	2140	2020	117,456	57,049
36	36	36	1	0,122	1,421	0,557	2300	2120	117,474	57,049
37	37	37	1	0,093	1,216	0,470	2090	1960	117,645	57,103
7a	84	7,1	3	0,056	0,932	0,337	2200	2040	117,498	56,917
38	38	38	5	0,036	0,780	0,240	2000	1840	117,636	57,108
Total				10,460	2,216	0,782	2353,333	2144,643		

Общая площадь этих образований 10,5 км², средний периметр – 2,2 км, средняя длина – 0,78 км, средние верхняя и нижняя отметки – 2353 и 2145 м н.у.м. Общая площадь даже большего в 1,5 раза ледников уменьшилась почти в 2 раза (см. табл. 1), средняя длина так же сократилась почти в 2 раза, верхняя граница опустилась на 47 м, а нижняя поднялась на 45 м.

По данным других исследователей [Osipov, Osipova, 2015] площадь открытой части ледников 1–14 плюс 33–36 в 2013 г. составляла 3,9 км², а по нашим расчетам их общая площадь – 5,4 км². В 2009 г по данным этих же авторов [Osipov, Osipova, 2014] открытая часть ледников 1–16, 19–27, 29–30 была 7,75 км². По нашим расчетам их общая площадь – 8,7 км². По результатам анализа [Stokes et., 2013] в 2010 г. площадь открытой части основных ледников 1–30 составляла – 6,62 км², на 2,58 км² меньше общей площади в 2015 г. по нашим данным (см. табл. 2).

Аналогичная картина наблюдается в других горных системах Восточной Сибири (Байкальский и Баргузинский хребты, южная часть Восточного Саяна). Так, например, северный ледник Перетолчина сократился с 0,68 км² (1906 г.) до 0,34 км² (2012 г.). Вся группа ледников массива Мунку-Сардык с начала 1960-х по 2006 г. сократилась с 2,62 до 1,057 км² [Kitov et., 2015].

Выводы. Составление баз данных на основе ГИС-проектов по единой методике с использованием современной космической съемки и данных топографических карт прошлых лет, дополненных информацией со специальных гляциологических карт, позволяет проследить динамику оледенения за последние полвека и количественно ее представить. Общедоступные космоснимки среднего разрешения (15–30 м) Landsat позволяют с достаточной точностью (порядка 5%) оценить состояние и размеры современного оледенения. Съёмка высокого разрешения (0,5–2,5 м) позволяет уточнить границы нивально-гляциальных образований, степень бронирования поверхностными моренами, тип образования, морфологическую структуру и другие характеристики объектов.

По результатам анализа составленных БД за последние 50–60 лет, наблюдается сокращение размеров ледников почти в два раза, как по площади, так и по длине. Прослеживается смещение образований к верхней части кара с повышением нижней границы, а так же переход, преимущественно объектов в карах южной экспозиции, в состояние многолетних снежников и каменных глетчеров. Выявляются так же механизмы «самоорганизации» нивально-гляциальных образований, проявляющиеся в «самосохранении» посредством образования натечного льда в верхних крутых склонах кара и бронирования поверхностными моренами нижней пологой части ледника.

Благодарности. Работа выполнена при поддержке РФФИ, проект 16-05-00902А «Механизмы самоорганизации геосистем Прибайкалья».

СПИСОК ЛИТЕРАТУРЫ

1. Голубев Г.Н. Гидрология ледников. Л.: Гидрометиздат, 1976. 248 с.

2. Долгушин Л.Д., Осипова Г.В. Ледники. Серия «Природа мира». М.: Мысль, 1989. 447 с.

3. *Иванов Е.Н.* Динамика снежно-ледовых геосистем гор юга Восточной Сибири. Иркутск: Изд-во ИГ СО РАН, 2015. 125 с.

4. Каталог ледников СССР. Хребет Кодар. Т. 17, вып. 2, ч. 1. Л.: Гидрометиздат, 1972. 44 с.

5. Китов А.Д., Плюснин В.М. Особенности локальных гляциологических явлений в горных ландшафтах (на примере Байкало-Урумчинского трансекта). Материалы международной конференции InterCarto-InterGIS-14, Том 1. Саратов: Международная картографическая ассоциация, 2008. С. 130–137.

6. *Китов А.Д., Плюснин В.М.* Уточнение базы метаданных для инфраструктуры пространственных данных о ледниках. Материалы международной конференции InterCarto-InterGIS-17, Международная картографическая Ассоциация. Барнаул, 2011. С. 71–82.

7. Китов А.Д., Плюснин В.М. Создание и использование базы данных ледников Южной Сибири. Материалы международной конференции InterCarto-InterGIS-18. Смоленск: Изд-во СмолГУ, 2012. С. 143–148.

8. Китов А.Д., Плюснин В.М. Базы данных ледников Прибайкалья. Материалы международной конференции ИнтерКарто-ИнтерГИС-21. Краснодар: Изд-во Куб. ГУ, 2015. С. 318-332.

9. Коваленко Н.В. Режим и эволюция малых форм оледенения. М.: Изд-во МГУ, 2008. 207 с.

10. Котляков В.М., Хромова Т.Е., Носенко Г.А., Попова В.В., Чернова Л.П., Муравьев А.Я., Рототаева О.В., Никитин С.А., Зверкова Н.М. Современные изменения ледников горных районов России. М.: Тов-во научных изданий КМК, 2015. 288 с.

11. Мерзлотоведение: краткий курс. Под ред. В.А. Кудрявцева. М.: Изд-во МГУ, 1981. 240 с.

12. Пластинин Л.А. Дистанционно-картографическое изучение нивально-гляциальных комплексов горных районов Сибири (морфология и динамика ледников, снежников и наледей хребта Кодар в Забайкалье). Иркутск: Изд-во ИрГТУ, 1998. 142 с.

13. Плюснин В.М. Аэрометоды в изучении и картографировании ледников Северного Забайкалья. Под ред. Л.А. Пластинина, Аэрокосмическая информация как источник ресурсного картографирования. Иркутск: Изд-во ИГСиДВ, 1979. С. 125–135.

14. Плюснин В.М., Китов А.Д. Динамика нивально-гляциальных систем юга Восточной Сибири // Лед и снег. 2010. № 2. С. 5–11.

15. Поповнин В.В. Современная эволюция ледников Земли. Современные глобальные изменения природной среды. Т. 1. М.: Научный мир, 2006. С. 507–577.

16. Преображенский В.С. Кодарский ледниковый район. М.: Изд-во АН СССР, 1960. 64 с.

17. Руководство по составлению Каталога ледников СССР. Л.: Гидрометиздат, 1966. 154 с.

18. Суслов С.П. Физическая география СССР. Азиатская часть. 2-е изд. М.: Учпедгиз, 1954. 699 с.

19. *Kitov A.D., Kovalenko S.N., Plyusnin V.M., Suvorov E.G.* Modern changes of high altitude landscapes and glaciation in Southern Siberia (Russia) on the example of the East Sayan Mountains. Environmental Earth Sciences, 2015, vol. 74, iss. 3, p. 1931–1946. doi: 10.1007/s12665-015-4455-y.

20. *Osipov E.Y., Osipova O.P.* Mountain glaciers of southeast Siberia: current state and changes since the Little Ice Age. Ann Glaciol, 2014, 55 (66), p. 167–176. doi: 10.3189/2014AoG66A135.

21. Osipov E.Y., Osipova O.P. Glaciers of the Levaya Sygykta River watershed, Kodar Ridge, southeastern Siberia, Russia: modern morphology, climate conditions and changes over the past decades. 2015, vol. 74, iss. 3, p. 1969-1984. doi:10.1007/s12665-015-4352-4

22. *Stepanova O.G., Trunova V.A., Zvereva V.V., Melgunov M.S., Fedotov A.P.* Reconstruction of glacier fluctuations in the East Sayan, Baikalsky and Kodar Ridges (East Siberia, Russia) during the last 210 years based on high-resolution geochemical proxies from proglacial lake bottom sediments. Environ Earth Sci., 2015, vol. 74, iss. 3, p. 2029-2040. doi: 10.1007/s12665-015-4457-9.

23. *Stokes C.R., Shahgedanova M., Evans I.S., Popovnin V.V.* Accelerated loss of alpine glaciers in the Kodar Mountains, south-eastern Siberia. Glob Plan Change, 2013, 101, p. 82–96. doi:10.1016/j.gloplacha.2012.12.010.

24. *Shahgedanova M., Popovnin V., Aleynikov A., Stokes C.R.* Geodetic mass balance of Azarova Glacier, Kodar mountains, eastern Siberia, and its links to observed and projected climatic change. Ann Glaciol, 2011, 52 (58), p. 129–137. doi: 10.3189/172756411797252275.

25. WEBGEO (2015) http://www.webgeo.ru/index.php?r=47&id=38.

A.D. Kitov¹, V.M. Plyusnin²

INVENTORY nival-glacial FORMATIONS of the Kodar RIDGE (DATABASE)

Abstract. The paper presents the continuing research of the authors on mapping the nival-glacial formations of Southern Siberia and the establishment of relevant databases. We consider the state of

¹ Sochava Institute of Geography SB RAS; e-mail: kitov@irigs.irk.ru.

² Sochava Institute of Geography SB RAS; e-mail: plyusnin@irigs.irk.ru.

glaciation from the middle of the last century up to the present time in various stages. Different glaciation states of Kodar Ridge were determined: (1) according to the first topographic maps at the beginning of 1960s years, (2) according to the Glacier Catalog of the USSR (in the early 1970s), (3) according to the Map of the glaciers of Kodar Ridge of the 1976 (research of the IGSFE Academy of Sciences of the USSR), and (4) the current state according to remote sensing of the Earth (space images of the 2007-2015 EROS, Quick Bird, Aster, Landsat). Attribute tables are presented in WEBGEO type format. Analysis of the data of different time state shows the dynamics of Kodar Ridge glaciation with the trend of glacier reduction by more than two times. We refined coordinates, area, shape, length, orientation and high-rise location of the preserved and degraded nival-glacial formations. The data and cartographic images of glacial objects specify and complete the international data base of glaciers.

Key words: Glaciers, Kodar Ridge, databases, GIS, remote sensing of the Earth.

REFERENCES

1. Golubev G.N. Gidrologiy lednikov, [Hydrology glaciers]. L.: Gidrometizdat, 1976. 248 p.

2. Dolgushin L.D., Osipov G.A. Ledniki [Glaciers]. Series «Priroda I mir». M.: Mysel, 1989. 447 p.

3. *Ivanov E.N.* Dinamika snejno-ledovih geosistem gor yuga Vostochnoy Sibiri, [Dynamics of snow and ice geosystems mountains south of Eastern Siberia]. Irkutsk: izd-vo IG SB RAS, 2015. 125 p.

4. Katalog lednikov SSSR. Hrebet Rodar [Catalogue of glaciers of USSR . Kodar Ridge], T. 17, iss. 2, part 1. L.: Gidrometizdat, 1972. 44 p.

5. *Kitov A.D., Plyusnin V.M.* Osobennosti lokalnih gliyczyologicheskih iavleniy v gornih landshaftah (na primere Baikalo-Urumchinskogo transekta) [Features local glaciological phenomena in mountainous landscapes (the example of the Baikal-Urumqi transect)], Materiali mejdunarod-noy konferencii InterCarto-InterGIS-14. Saratov: Int. Cartogr. Assoc., 2008. Pp. 130–137.

6. *Kitov A.D., Plyusnin V.M.* Utochnenie bazi metadannih dlia infrastrukturi prostranstvennih dannih o lednikah [Clarification of metadata database for spatial data infrastructure of the glaciers], Materiali mejdunarodnoy konferencii InterCarto-InterGIS-17. Barnaul: International cartographic Assoiation, 2011. Pp. 71–82.

7. *Kitov A.D., Plyusnin V.M.* Sozdanie i ispolzovanie bazi dannih lednikov Ujnoy Sibiri [Creating and using a database of South Siberia glaciers], Materiali mejdunarodnoy konferencii Inter-Carto-InterGIS-18. Smolensk: Izd-vo SmolGU, 2012. Pp. 143–148.

8. *Kitov A.D., Plyusnin V.M.* Bazi dannih lednikov Pribaikaliy [Databases Pribaikalye glaciers], Materiali mejdunarodnoy konferencii InterCarto-InterGIS–21. Krasnodar: izd-vo KubGU, 2015. Pp. 318–332.

9. *Kovalenko N.V.* Rejim i evoluciya malih form oledeneniy [Mode and evolution of small forms of glaciation]. M.: izd-vo MGU, 2008. 207 p.

10. Kotlyakov V.M., Khromova T.Y., Nosenko G.A., Popova V.V., Chernova L.P., Muraviev A.Y., Rototaeva O.V., Nikitin S.A., Zverkova N.M. Sovremtnnie izmeneniy lednikov gornih raionov Rossii [Recent glacier changes in mountain regions of Russia]. M.: KMK Scientisic Press, 2015. 288 p.

11. Merzlotovedenie: kratkii kurs [Permafrost: short course], Ed. Kudryavtsev VA. M.: MGU, 1981. 240 p.

12. *Plastinin L.A.* Distancionno-kartograficheskoe izuchenie nivalno-glycialnih kompleksov gornih raionov Sibiri (morfologiy i dinamika lednikov, snejnikov i naledey hrebta Kodar v Zaboikalie). [Remote mapping study of nival-glacial complexes in mountain regions of Siberia (morphology and dynamics of glaciers, snowfields and icings of Kodar Ridge in Transbaikalia)]. Irkutsk: Izd-vo IrGTU, 1998. 142 p.

13. *Plyusnin V.M.* Aerometodi v izuchenii io kartografirovanii lednikov Severnogo Zabaikaliy, [Aerial methods in the study and mapping of the glaciers of the North Transbaikalia], Ed. Plastinin LA, Atrokosmicheskay informaciy kak istochnik resursnogo kartografirovaniy [Aerospace informatsiya as a source of resource mapping]. Irkutsk: Izd-vo IG SB RAS, 1979. Pp. 125–135.

14. *Plyusnin V.M., Kitov A.D.* Dinavika nivalno-glacialnih system yuga Vostochnoy Sibiri [Dynamics of nival-glacial systems of the south of Eastern Siberia] // Led i sneg. 2010. № 2. Pp. 5–11.

15. *Popovnin V.V.* Sovremennay evoluciy lednikov Zemli [Modern evolution of the Earth's glaciers], Sovremennie globalnie izmeneniy prirodnoy sredi [Today's global environmental changes]. T. 1. M.: Nauchniy mir, 2006. Pp. 507–577.

16. *Preobrazhenskiy V.S.* Kodarskiy lednikoviy raion [Kodar glacial area]. M.: Izd-vo AN SSSR, M., 1960, 64 p.

17. Rukovodstvo po sostavleniu Kataloga lednikov SSSR [Guidelines for the Catalogue of glaciers of USSR]. L.: Gidrometeoizdat, 1966. 154 p.

18. *Suslov S.P.* Fizicheskay geografiy SSSR. Aziatskay chast [Physical geography of the USSR. The Asian part]. 2nd ed. M.: Uchpedgiz, 1954. 699 p.

19. *Kitov A.D., Kovalenko S.N., Plyusnin V.M., Suvorov E.G.* Modern changes of high altitude landscapes and glaciation in Southern Siberia (Russia) on the example of the East Sayan Mountains. Environmental Earth Sciences, 2015, vol. 74, iss. 3, Pp. 1931–1946. DOI 10.1007/s12665-015-4455-y.

20. Osipov E.Y., Osipova O.P. Mountain glaciers of southeast Siberia: current state and changes since the Little Ice Age. Ann Glaciol, 2014, 55 (66), p. 167–176. doi: 10.3189/2014AoG66A135.

21. Osipov E.Y., Osipova O.P. Glaciers of the Levaya Sygykta River watershed, Kodar Ridge, southeastern Siberia, Russia: modern morphology, climate conditions and changes over the past decades. 2015, vol. 74, iss. 3, p. 1969-1984. doi:10.1007/s12665-015-4352-4

22. *Stepanova O.G., Trunova V.A., Zvereva V.V., Melgunov M.S., Fedotov A.P.* Reconstruction of glacier fluctuations in the East Sayan, Baikalsky and Kodar Ridges (East Siberia, Russia) during the last 210 years based on high-resolution geochemical proxies from proglacial lake bottom sediments. Environ Earth Sci., 2015, vol. 74, iss. 3, p. 2029-2040. DOI 10.1007/s12665-015-4457-9.

23. *Stokes C.R., Shahgedanova M., Evans I.S., Popovnin V.V.* Accelerated loss of alpine glaciers in the Kodar Mountains, south-eastern Siberia. Glob Plan Change, 2013, 101, Pp. 82–96. doi:10.1016/j.gloplacha.2012.12.010.

24. Shahgedanova M., Popovnin V., Aleynikov A., Stokes C.R. Geodetic mass balance of Azarova Glacier, Kodar mountains, eastern Siberia, and its links to observed and projected climatic change. Ann Glaciol, 2011, 52 (58), p. 129–137. doi:10.3189/172756411797252275.

25. WEBGEO (2015) http://www.webgeo.ru/index.php?r=47&id=38.

УДК 528.92

А.Н. Бешенцев¹

ИНФРАСТРУКТУРА ПРОСТРАНСТВЕННЫХ ДАННЫХ БАЙКАЛЬСКОГО РЕГИОНА: РАЗМЕЩЕНИЕ И КАРТОГРАФИРОВАНИЕ

Резюме. В работе рассмотрена инфраструктура пространственных данных (ИПД) как особое географическое явление современного информационного общества. Выполнен географический анализ компонентов ИПД, предложены способы их картографирования. Представлена карта ИПД Байкальского региона и дана сравнительная оценка обеспеченности отдельных субъектов РФ информационными ресурсами.

Ключевые слова: инфраструктура пространственных данных, Байкальский регион, компоненты ИПД, картографирование.

Введение. Для организации информационного взаимодействия в нашей стране создаётся инфраструктура пространственных данных (ИПД) – информационно-телекоммуникационная

¹ Байкальский институт природопользования СО РАН, лаборатория геоинформационных систем, Улан-Удэ, 670047, Россия, заведующий, проф. РАН, докт. геогр. н.; e-mail: abesh@mail.ru.